題目列表(包括答案和解析)
(本小題滿分12分)一個袋中有8個大小相同的小球,其中紅球1個,白球和黑球若干,現(xiàn)從袋中有放回地取球,每次隨機取一個,又知連續(xù)取兩次都是白球的概率為:
(1)求該口袋內(nèi)白球和黑球的個數(shù);
(2)若取一個紅球記2分,取一個白球記1分,取一個黑球記0 分,連續(xù)取三次分數(shù)之和為4分的概率;
(3)現(xiàn)甲、乙兩個小朋友做游戲,方法是:不放回從口袋中輪流摸取一個球,甲先取、乙后取,然后甲再取,直到兩個小朋友中有1人取得黑球時游戲終止,每個球在每一次被取出的機會均相同.求當游戲終止時,取球次數(shù)不多于3的概率。
(本小題滿分12分)
某甲有一個放有3個紅球、2個白球、1個黃球共6個球的箱子;某乙也有一個放有3個紅球、2個白球、1個黃球共6個球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個球,直到取到紅球為止,求甲取球次數(shù)的數(shù)學期望;
(Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時為甲勝,異色時為乙勝,這個游戲規(guī)則公平嗎?請說明理由.
1.A 2.B 3.C 4.C 5.A 6.C 7.D 8.D 9.A 10.C
11.80 12.30 13.c 14. 15. .
三、解答題
16.解:(1)(ka+b)2=3(a-kb)2 k2++2ka?b=3(1+k2-2ka?b)
∴a?b= 當k=1時取等號. (6分)
(2)a?b=
∴時,a?b=取最大值1. (12分)
17.解:(1)由已知有xn+1-1=2(xn-1)
∴{xn-1}是以1為首項以2為公比的等比數(shù)列,又x1=2.
∴xn-1=2n-1 ∴xn=1+2n-1(n∈N*) (6分)
(2)由
又當n∈N*時,xn≥2故點(xn,yn)在射線x+y=3(xn≥2)上。 (12分)
18.解:(1)記乙勝為事件A,則P(A)=
|