19. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an

(Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時(shí),y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分) 已知數(shù)列{an}滿足

   (Ⅰ)求數(shù)列的前三項(xiàng):a1,a2,a3;

   (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn.

查看答案和解析>>

(本題滿分12分)   已知函數(shù)

   (Ⅰ)當(dāng)的 單調(diào)區(qū)間;

   (Ⅱ)當(dāng)的取值范圍。

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答題

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  當(dāng)k=1時(shí)取等號.                                (6分)

   (2)a?b=

       

        ∴時(shí),a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1為首項(xiàng)以2為公比的等比數(shù)列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又當(dāng)nN*時(shí),xn≥2故點(diǎn)(xn,yn)在射線x+y=3(xn≥2)上。                (12分)

18.解:(1)記乙勝為事件A,則PA)=

          <rt id="jsyu7"><del id="jsyu7"><p id="jsyu7"></p></del></rt>

          <rp id="jsyu7"></rp>
          <span id="jsyu7"><dfn id="jsyu7"></dfn></span>

             (2)解法一:由題意:(x,y)=(1,4)或(1,3)

          或(1,2)或(1,1)或(2,3)或(2,2)

          或(2,1)或(3,2)或(3,1)或(4,1)。

          故當(dāng)x=1,y=4時(shí),x+2y取最大值9,即x=1,

          y=4時(shí)乙獲勝的概率最大為.(12分)

          解法二:令t=x+2y,,(x,y)取值如圖所示,由

          線性規(guī)劃知識知x=1,y=4時(shí),t最大,

          x=1,y=4,乙獲勝的概率最大為.                                                   (12分)

          19.解(1)設(shè)正三棱柱的側(cè)棱長為.取中點(diǎn),連

          是正三角形,

          又底面側(cè)面,且交線為

          側(cè)面.……3分

          ,則直線與側(cè)面所成的角為

          中,,解得

          此正三棱柱的側(cè)棱長為.                       ……5分

          (2)過,連,

          側(cè)面為二面角的平面角.…7分

          中,

          ,

          中,

          故二面角的大小為.         ……9分

          (3)解法1:由(2)可知,平面,平面平面,且交線為,

          ,則平面.……11分

          中,

          中點(diǎn),點(diǎn)到平面的距離為.  ………… 13

          20.解:

           

          21.解:(1)

          ,故橢圓Qn的焦距2cn≥1.                                                            (4分)

             (2)(i)設(shè)Pn(xnyn),則

                  

           

           

           

           

           

           


          同步練習(xí)冊答案