由得.因此即所以. 查看更多

 

題目列表(包括答案和解析)

閱讀下面的文言文,完成下面5題。

李斯論  (清)姚鼐

蘇子瞻謂李斯以荀卿之學(xué)亂天下,是不然。秦之亂天下之法,無待于李斯,斯亦未嘗以其學(xué)事秦。

20070327

 
當(dāng)秦之中葉,孝公即位,得商鞅任之。商鞅教孝公燔《詩》、《書》,明法令,設(shè)告坐之過,而禁游宦之民。因秦國地形便利,用其法,富強(qiáng)數(shù)世,兼并諸侯,迄至始皇。始皇之時,一用商鞅成法而已,雖李斯助之,言其便利,益成秦亂,然使李斯不言其便,始皇固自為之而不厭。何也?秦之甘于刻薄而便于嚴(yán)法久矣,其后世所習(xí)以為善者也。斯逆探始皇、二世之心,非是不足以中侈君張吾之寵。是以盡舍其師荀卿之學(xué),而為商鞅之學(xué);掃去三代先王仁政,而一切取自恣肆以為治,焚《詩》、《書》,禁學(xué)士,滅三代法而尚督責(zé),斯非行其學(xué)也,趨時而已。設(shè)所遭值非始皇、二世,斯之術(shù)將不出于此,非為仁也,亦以趨時而已。

君子之仕也,進(jìn)不隱賢;小人之仕也,無論所學(xué)識非也,即有學(xué)識甚當(dāng),見其君國行事,悖謬無義,疾首嚬蹙于私家之居,而矜夸導(dǎo)譽(yù)于朝庭之上,知其不義而勸為之者,謂天下將諒我之無可奈何于吾君,而不吾罪也;知其將喪國家而為之者,謂當(dāng)吾身容可以免也。且夫小人雖明知世之將亂,而終不以易目前之富貴,而以富貴之謀,貽天下之亂,固有終身安享榮樂,禍遺后人,而彼宴然無與者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之誅惡人,亦有時而信也邪!

且夫人有為善而受教于人者矣,未聞為惡而必受教于人者也。荀卿述先王而頌言儒效,雖間有得失,而大體得治世之要。而蘇氏以李斯之害天下罪及于卿,不亦遠(yuǎn)乎?行其學(xué)而害秦者,商鞅也;舍其學(xué)而害秦者,李斯也。商君禁游宦,而李斯諫逐客,其始之不同術(shù)也,而卒出于同者,豈其本志哉!宋之世,王介甫以平生所學(xué),建熙寧新法,其后章惇、曾布、張商英、蔡京之倫,曷嘗學(xué)介甫之學(xué)耶?而以介甫之政促亡宋,與李斯事頗相類。夫世言法術(shù)之學(xué)足亡人國,固也。吾謂人臣善探其君之隱,一以委曲變化從世好者,其為人尤可畏哉!尤可畏哉!

 [注釋]①宴然:安閑的樣子。②諫逐客:秦始皇曾發(fā)布逐客令,驅(qū)逐六國來到秦國做官的人,李斯寫了著名的《諫逐客書》,提出了反對意見。

對下列句子中加點的詞語的解釋,不正確的一項是(    )

    A.非是不足以中侈君張吾之寵         中:符合

    B.滅三代法而尚督責(zé)                 尚:崇尚

    C.知其不義而勸為之者               勸:鼓勵

    D.而終不以易目前之富貴             易:交換

下列各組句子中,加點的詞的意義和用法相同的一組是(    )

A.因秦國地形便利             不如因普遇之

    B.設(shè)所遭值非始皇、二世       非其身之所種則不食

    C.且夫小人雖明知世之將亂       臣死且不避,卮酒安足辭

    D.不亦遠(yuǎn)乎                     王之好樂甚,則齊國其庶幾乎

下列各項中,加點詞語與現(xiàn)代漢語意義不相同的一項是(    )

    A.小人之仕也,無論所學(xué)識非也

    B.而大體得治世之要

C.而以富貴之謀,貽天下之亂

    D.一以委曲變化從世好者

下列各句中對文章的闡述,不正確的一項是(    )

A.蘇軾認(rèn)為李斯以荀卿之學(xué)輔佐秦朝行暴政,致使天下大亂,作者則認(rèn)為李斯是完全舍棄了荀子的說學(xué),李斯的做法只不過是追隨時勢罷了。

B.作者由論李斯事秦進(jìn)而泛論人臣事君的問題,強(qiáng)調(diào)為臣者對于國君的“悖謬無義”之政,不應(yīng)為自身的富貴而阿附甚至助長之。

C.此文主旨在于指出秦行暴政是君王自身的原因,作者所論的不可“趨時”,“中侈君張吾之寵”的道理,在今天仍有借鑒意義。

D.文章開門見山,擺出蘇軾的觀點,然后通過對秦國發(fā)展歷史的分析,駁斥了蘇說的謬論,提出了自己的見解。論證嚴(yán)密,逐層深入,是一篇典范的史論。

把文言文閱讀材料中畫橫線的句子翻譯成現(xiàn)代漢語。

   (1)秦之甘于刻薄而便于嚴(yán)法久矣

譯文:                                                                    

   (2)謂天下將諒我之無可奈何于吾君,而不吾罪也

譯文:                                                                   

   (3)其始之不同術(shù)也,而卒出于同者,豈其本志哉

譯文:                                                                   

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設(shè),,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;

   ②假設(shè)時,命題成立,即,

   則當(dāng)時,

    即

故當(dāng)時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

問題:將y=2x的圖象向________平行移動________個單位,再作關(guān)于直線y=x對稱的圖象,可得函數(shù)y=log2(x+1)的圖象.

對于此問題,甲、乙、丙三位同學(xué)分別給出了不同的解法:

甲:在同一坐標(biāo)系內(nèi)分別作y=2x與y=log2(x+1)的圖象,直接觀察,可知向下平行移動1個單位即得.

乙:與函數(shù)y=log2(x+1)的圖象關(guān)于直線y=x對稱的曲線是它的反函數(shù)y=2x-1的圖象,為了得到它,只需將y=2x的圖象向下平移1個單位.

丙:由所以點(0,0)在函數(shù)y=log2(x+1)的圖象上,(0,0)點關(guān)于y=x的對稱的點還是其本身.函數(shù)y=2x的圖象向左或向右或向上平行移動都不會過(0,0)點,因此只能向下平行移動1個單位.

你贊同誰的解法?你還有其他更好的解法嗎?

查看答案和解析>>

菲爾茲獎

  菲爾茲獎是數(shù)學(xué)家們?yōu)橘澰S和緬懷JCg菲爾茲的遠(yuǎn)見卓識、組織才能和他為促進(jìn)數(shù)學(xué)事業(yè)的國際交流中所表現(xiàn)出來的無私奉獻(xiàn)的偉大精神而設(shè)立的,資金是JCg菲爾茲的遺產(chǎn)及1924年國際數(shù)學(xué)大會的剩余經(jīng)費(fèi),菲爾茲獎是一枚金質(zhì)獎?wù)潞? 500美元的獎金,獎?wù)碌恼媸前⒒椎碌母〉耦^像.

  菲爾茲獎的一個最大特點就是獎勵年輕人,只授予40歲以下的數(shù)學(xué)家,即授予那些對未來數(shù)學(xué)發(fā)展起到重大作用的人.

  每次國際數(shù)學(xué)大會的召開,從國際上權(quán)威性的數(shù)學(xué)雜志到一般性的數(shù)學(xué)刊物,都爭相報道獲獎人物.對于年輕人來說,菲爾茲獎是國際上最高的數(shù)學(xué)獎.菲爾茲獎就獎金數(shù)目來說與諾貝爾獎相比可以說微不足道,但為什么在人們心目中它的地位竟如此崇高呢?主要原因有三:第一,它是由數(shù)學(xué)界的國際權(quán)威學(xué)術(shù)團(tuán)體——國際數(shù)學(xué)聯(lián)合會主持,從全世界的第一流的青年數(shù)學(xué)家中評選出來的;第二,它是在每隔四年才召開一次的國際數(shù)學(xué)大會上隆重頒發(fā)的,且每次獲獎?wù)邇H有二至四名,因此獲獎的機(jī)會比諾貝爾獎還要少;第三,也是根本的一條,由于得獎人的出色才干,贏得了國際社會的聲譽(yù).正如本世紀(jì)著名數(shù)學(xué)家C.H.H.外爾對1954年兩位獲獎?wù)叩脑u價:“他們所達(dá)到的高度是自己未曾想到的”“自己從未見過這樣的明星在數(shù)學(xué)的天空中燦爛升起”“數(shù)學(xué)界為你們二位所做的工作感到驕傲”.

1.同學(xué)們,讀了上面的材料,你做好了將來為數(shù)學(xué)作出貢獻(xiàn)的心理準(zhǔn)備了嗎?

2.至今為止,我們國家還沒有一人獲得菲爾茲獎,對此你有何感想?

查看答案和解析>>


同步練習(xí)冊答案