題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
現有5名同學的物理和數學成績如下表:
物理 | 64 | 61 | 78 | 65 | 71 |
數學 | 66 | 63 | 88 | 76 | 73 |
(1)畫出散點圖;
(2)若與具有線性相關關系,試求變量對的回歸方程并求變量對的回歸方程.
19C.解:由得,所以,所以,因為f(x)=x,所以解得x=-1或-2或2,所以選C
調查某醫(yī)院某段時間內嬰兒出生時間與性別的關系,得到以下數據。
晚上 | 白天 | 合計 | |
男嬰 | 24 | 31 | 55 |
女嬰 | 8 | 26 | 34 |
合計 | 32 | 57 | 89 |
試問有多大把握認為嬰兒的性別與出生時間有關系?
| 晚上 | 白天 | 合計 |
男嬰 | 24 | 31 | 55 |
女嬰 | 8 | 26 | 34 |
合計 | 32 | 57 | 89 |
3+
| ||
2 |
3-
| ||
2 |
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com