題目列表(包括答案和解析)
若<<0,則下列不等式:
①a+b<ab;
②|a|>|b|;
③a<b;
④+>2.
其中正確的個(gè)數(shù)為
0
1
2
3
x2-x-2 |
1 |
3 |
1 |
3 |
π |
8 |
π |
4 |
1 |
2 |
2 |
2 |
A、.1個(gè) | B、2個(gè) |
C、3個(gè) | D、.4個(gè) |
. |
X |
1 |
n |
n |
i=1 |
. |
Y |
1 |
n |
n |
i=1 |
? |
y |
. |
X |
. |
Y |
下列命題:①△ABC中,若A>B,則;②若對(duì)一切恒成立,則必有;③不等式的解集為;④函數(shù)最小值為2,其中正確的序號(hào)為__________ 。
x2-x-2 |
1 |
3 |
1 |
3 |
π |
8 |
π |
4 |
1 |
2 |
2 |
2 |
A..1個(gè) | B.2個(gè) | C.3個(gè) | D..4個(gè) |
一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有 一項(xiàng)是符合題目要求的。
1.B 2.D 3.B 4.C 5.C 6.B 7.A 8.B 9.A 10.D
二、填空題:本大題共5個(gè)小題,每小題5分,共25分,把答案填在題中的橫線上。
11.6 12.2 13.80 14.20 15. 0,
三、解答題:本大題共6小題,共75分。解答應(yīng)寫文字說明,證明過程或演算步驟。
16.解(1)證明:由得
∴………………………………………………4分
(2)由正弦定理得 ∴……① …………6分
又,=2, ∴ …………② …………8分
解①②得 , …………………………………………10分
∴ …………………12分
17.解:(1)由得,即=0.……………2分
當(dāng)n>2時(shí)有
∴ ……………………………6分
(2)由(1)知n>2時(shí),……………8分
又=0, =2也適合上式,
∴ ∴……………………10分
∴
=1-<1……………………………………………12分
18.解:(1)分別取BE、AB的中點(diǎn)M、N,
連結(jié)PM、MC,PN、NC,則PM=1,MB=,BC=,
∴MC=,而PN=MB=,
NC=,∴PC=,…………………………4分
∴
故所求PC與AB所成角的余弦值為………6分
(2)連結(jié)AP,∵二面角E-AB-C是直二面角,且AC⊥AB
∴∠BAP即為所求二面角的平面角,即∠BAP=300……8分
在RtΔBAF中,tan∠ABF=,∴∠ABF=600,
故BF⊥AP, ………………………………………10分
又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC………12分
另解:分別以AB、AC、AF為x、y、z軸建立直角坐標(biāo)系,
則,
∴
而, ∴
故異面直線PC與AB所成的角的余弦值為
(2)分別設(shè)平面ABC和平面PAC的法向量分別為,P點(diǎn)坐標(biāo)設(shè)為,則而,則由
得
且 ∴,
再由得
∴,,
而
∴,即
BF⊥AP,BF⊥AC∴BF⊥平面PAC
19.解:(1)當(dāng)0<x≤10時(shí),……2分
當(dāng)x >10時(shí),…………4分
…………………………………5分
(2)①當(dāng)0<x≤10時(shí),由
當(dāng)
∴當(dāng)x=9時(shí),W取最大值,且……9分
②當(dāng)x>10時(shí),W=98
當(dāng)且僅當(dāng)…………………………12分
綜合①、②知x=9時(shí),W取最大值.
所以當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝生產(chǎn)中獲利最大.……13分
20. 解: (I) ,依題意有:,…………………2分
即,
,由
(也可寫成閉區(qū)間)……………4分
(2) (1)
函數(shù)的圖象與直線的交點(diǎn)的個(gè)數(shù)問題可轉(zhuǎn)化為方程(1)的解的個(gè)數(shù)問題.
令
則…………………………5分
①6分
②
……………………9分
③
∴的極大值為
∴的圖象與軸只有一個(gè)交點(diǎn).…………………………………12分
綜上所述: ;
.……………13分
21.解:(1)B(0,-b)
,即D為線段FP的中點(diǎn).
∴ ……………………………2分
,即A、B、D共線.
而
∴,得,
∴………………………………………5分
(2)∵=2,而,∴,故雙曲線的方程為………①
∴B、的坐標(biāo)為(0,-1)…………………………………………………………6分
假設(shè)存在定點(diǎn)C(0,)使為常數(shù).
設(shè)MN的方程為………………②
②代入①得………………………………………7分
由題意得: 得:……8分
設(shè)M、N的坐標(biāo)分別為(x1,y1) 、(x2,y2)
…………………………………………………………9分
而=
=
==,…………………………10分
整理得:
對(duì)滿足的恒成立.
∴且
解得
存在軸上的定點(diǎn)C(0,4),使為常數(shù)17.…………………………13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com