題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設,證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一.選擇題:CCBAB BBADA
解析:1:由映射概念可知可得.故選.
2:如圖,+3=,在中,由余弦定理得|+3|=||=,故選C。
3:取,由圖象可知,此時注水量大于容器容積的,故選B。
4:因為三角形中的最小內(nèi)角,故,由此可得y=sinx+cosx>1,排除B,C,D,故應選A。
5:取x=4,y=?100%≈-8.3%,排除C、D;取x=30,y = ?100%≈77.2%,排除A,故選B。
6:等差數(shù)列的前n項和Sn=n2+(a1-)n可表示為過原點的拋物線,又本題中a1=-9<0, S3=S7,可表示如圖,由圖可知,n=,是拋物線的對稱軸,所以n=5是拋物線的對稱軸,所以n=5時Sn最小,故選B。
7:∵A,B是一對矛盾命題,故必有一真,從而排除錯誤支C,D。又由ab<0,可令a=1,b= -1,代入知B為真,故選B。
8:借助立體幾何的兩個熟知的結(jié)論:(1)一個正方體可以內(nèi)接一個正四面體;(2)若正方體的頂點都在一個球面上,則正方體的對角線就是球的直徑。可以快速算出球的半徑,從而求出球的表面積為,故選A。
9:分析選擇支可知,四條曲線中有且只有一條曲線不符合要求,故可考慮找不符合條件的曲線從而篩選,而在四條曲線中②是一個面積最大的橢圓,故可先看②,顯然直線和曲線是相交的,因為直線上的點在橢圓內(nèi),對照選項故選D。
10:,從而對任意的,存在唯一的,使得為常數(shù)。充分利用題中給出的常數(shù)10,100。令,當時,,由此得故選A。
二.填空題:11、; 12、; 13、;
14、; 15、;
解析:11:不等式等價于,也就是,所以,從而應填.
12: ,不論的值如何,與同號,所以
13:題設條件等價于點(0,1)在圓內(nèi)或圓上,或等價于點(0,1)到圓的圓心的距離不超過半徑,∴。
14.解:由正弦定理得即,∴所求直線的極坐標方程為.
15.解:即,
三.解答題:
16.解:(Ⅰ)函數(shù) 要有意義需滿足:即,解得, …………………………………3分
函數(shù)要有意義需滿足,即,
解得或 …………………………………6分
(Ⅱ)由(Ⅰ)可知,,
,………………………12分
17.解:(I)因為是等比數(shù)列,
又…………………………………………2分
∴是以a為首項,為公比的等比數(shù)列.………………………………6分
(II)(I)中命題的逆命題是:若是等比數(shù)列,則也是等比數(shù)列,是假命題.
……………………………………………………………8分
設的公比為則
又
是以1為首項,q為公比的等比數(shù)列,
是以為首項,q為公比的等比數(shù)列.……………………10分
即為1,a,q,aq,q2,aq2,…
但當q≠a2時,不是等比數(shù)列
故逆命題是假命題.……………………………………………………………………12分
另解:取a=2,q=1時,
因此是等比數(shù)列,而不是等比數(shù)列.
故逆命題是假命題.……………………………………………………………………12分
18.解:(1)設選對一道“可判斷2個選項是錯誤的”題目為事件A,“可判斷1個選項是錯誤的”該題選對為事件B,“不能理解題意的”該題選對為事件C.則---
所以得40分的概率………………………………4分
(2) 該考生得20分的概率=……………………5分
該考生得25分的概率:
= ……………………6分
該考生得30分的概率:== --------------7分
該考生得35分的概率:
= ……………………9分
∵ ∴該考生得25分或30分的可能性最大………………………………11分
(3)該考生所得分數(shù)的數(shù)學期望=
………………………………14分
19.解:(Ⅰ)由知圓心C的坐標為--------------(1分)
∵圓C關(guān)于直線對稱
∴點在直線上 -----------------(2分)
即D+E=-2,------------①且-----------------②-----------------(3分)
又∵圓心C在第二象限 ∴ -----------------(4分)
由①②解得D=2,E=-4 -----------------(5分)
∴所求圓C的方程為: ------------------(6分)
(Ⅱ)切線在兩坐標軸上的截距相等且不為零,設: -----------(7分)
圓C:
圓心到切線的距離等于半徑,
即
。 ------------------(12分)
所求切線方程 ------------------(14分)
20.(Ⅰ)證明:在正方體中,∵平面∥平面
平面平面,平面平面
∴∥.-------------------------------------3分
(Ⅱ)解:如圖,以D為原點分別以DA、DC、DD1為
x、y、z軸,建立空間直角坐標系,則有
D1(0,0,2),E(2,1,2),F(xiàn)(0,2,1),
∴,
設平面的法向量為
則由,和,得,
取,得,,∴ ------------------------------6分
又平面的法向量為(0,0,2)
故;
∴截面與底面所成二面角的余弦值為. ------------------9分
(Ⅲ)解:設所求幾何體的體積為V,
∵~,,,
∴,,
∴,
--------------------------11分
故V棱臺
∴V=V正方體-V棱臺. ------------------14分
21.解:(Ⅰ)由題意,在[]上遞減,則解得
所以,所求的區(qū)間為[-1,1] ………………………4分
(Ⅱ)取則,即不是上的減函數(shù)。
取,
即不是上的增函數(shù)
所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。-------9分
(Ⅲ)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域為[],即,為方程的兩個實數(shù)根,
即方程有兩個不等的實根。
當時,有,解得。
當時,有,無解。
綜上所述,---------------------------------------------14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com