9.已知數(shù)列滿足.如果.該數(shù)列前2008項(xiàng)的和是 A.670 B.671 C.1338 D.1339 查看更多

 

題目列表(包括答案和解析)

如果有窮數(shù)列a1,a2,…,an(n∈N*),滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,4,3,2,1就是“對稱數(shù)列”.已知數(shù)列bn是項(xiàng)數(shù)為不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中前連續(xù)的m項(xiàng),則數(shù)列bn的前2008項(xiàng)和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命題正確的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

如果有窮數(shù)列N*),滿足條件:,我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,4,3,2,1就是“對稱數(shù)列”.已知數(shù)列是項(xiàng)數(shù)為不超過的“對稱數(shù)列”,并使得1,2,22,…,依次為該數(shù)列中前連續(xù)的項(xiàng),則數(shù)列的前2008項(xiàng)和可以是:
;②;  ③;④.
其中命題正確的個(gè)數(shù)為           (   )

A.1B.2C.3D.4

查看答案和解析>>

如果有窮數(shù)列N*),滿足條件:,我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,4,3,2,1就是“對稱數(shù)列”.已知數(shù)列是項(xiàng)數(shù)為不超過的“對稱數(shù)列”,并使得1,2,22,…,依次為該數(shù)列中前連續(xù)的項(xiàng),則數(shù)列的前2008項(xiàng)和可以是:

; ②;   ③;④.

其中命題正確的個(gè)數(shù)為            (    )

A.1    B.2    C.3    D.4

 

查看答案和解析>>

如果有窮數(shù)列a1,a2,…,an(n∈N*),滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,4,3,2,1就是“對稱數(shù)列”.已知數(shù)列bn是項(xiàng)數(shù)為不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中前連續(xù)的m項(xiàng),則數(shù)列bn的前2008項(xiàng)和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命題正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

如果有窮數(shù)列a1,a2,…,an(n∈N*),滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,4,3,2,1就是“對稱數(shù)列”.已知數(shù)列bn是項(xiàng)數(shù)為不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中前連續(xù)的m項(xiàng),則數(shù)列bn的前2008項(xiàng)和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命題正確的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

 

 

 

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有 一項(xiàng)是符合題目要求的。

1.B  2.D  3.B  4.C  5.C  6.A  7.A  8.B  9.D 10.C

二、填空題:本大題共5個(gè)小題,每小題4分,共20分,把答案填在題中的橫線上。

11.6    12.2   13.80   14.  15.4

三、解答題:本大題共6小題,共75分。解答應(yīng)寫文字說明,證明過程或演算步驟.

16.解(1)證明:由

………………………………………………4分

(2)由正弦定理得     ∴……① …………6分

  又,=2,       ∴ …………② …………8分

解①②得 ,           …………………………………………10分

  .                                       …………………12分

 

17.解:(1)由, 即=1 , ∴=3,……2分

………………………4分

(2)設(shè),∴  ………①

………②………………………………7分

①-②得

           =

           =……………………………………………10分

, ∴.……………………12分

 

 

 

18.解:(1)分別取BE、AB的中點(diǎn)M、N,

連接PM、MC,PN、NC,則PM=1,MB=,BC=,

∴MC=,而PN=MB=,

NC=,∴PC=,…………………………4分

故所求PC與AB所成角的余弦值為………6分

(2)連結(jié)AP,∵二面角E-AB-C是直二面角,且AC⊥AB

∴∠BAP即為所求二面角的平面角,即∠BAP=300……8分

在RtΔBAF中,tan∠ABF=,∴∠ABF=600,

故BF⊥AP,    …………………………………………………………10分

又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC…………………………12分

 

18.另解:分別以AB、AC、AF為x、y、z軸建立直角坐標(biāo)系,

  ∴

  ∴

故異面直線PC與AB所成的角的余弦值為。

(2)分別設(shè)平面ABC和平面PAC的法向量分別為,P點(diǎn)坐標(biāo)設(shè)為,則,則由

,

再由

,,

,即

BF⊥AP,BF⊥AC∴BF⊥平面PAC

19.解:(1)當(dāng)0<x≤10時(shí),……2分

當(dāng)x >10時(shí),…………4分

…………………………………5分

(2)①當(dāng)0<x≤10時(shí),由

當(dāng)

∴當(dāng)x=9時(shí),W取最大值,且……9分

②當(dāng)x>10時(shí),W=98

當(dāng)且僅當(dāng)…………………………12分

綜合①、②知x=9時(shí),W取最大值.

所以當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝生產(chǎn)中獲利最大.……13分

 

20.解: (1)………………………2分

   ………4分

  

(也可寫成閉區(qū)間)…………6分

(2)  ……………………8分

不等式組所確定的平面區(qū)域如圖所示!10分

設(shè)

……………………………………13分

 

 

21.(1)B(0,-b)

,即D為線段FP的中點(diǎn).,

……………………………2分

,即A、B、D共線.

而 

,得,………………………4分

………………………………5分

 

(2)∵=2,而,∴,

故雙曲線的方程為………①………………………………6分

∴B、的坐標(biāo)為(0,-1)      

 

設(shè)的方程為…………②

②代入①得

由題意得:   得:…………9分

設(shè)M、N的坐標(biāo)分別為(x1,y1) 、(x2,y2)

      

       ………11分

整理得, 解得: (舍去)

∴所求的方程為………………………………13分

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案