1. 第Ⅱ卷共6頁(yè).用鋼筆或圓珠筆直接答在試題卷中. 查看更多

 

題目列表(包括答案和解析)

(14分)已知函數(shù)f(x)=在定義域內(nèi)為奇函數(shù),

且f(1)=2,f()=;

(1)確定函數(shù)的解析式;

(2)用定義證明f(x)在[1,+∞)上是增函數(shù);

第6頁(yè)(共6頁(yè))

 
(3)解不等式f(t2+1)+f(-3+3t-2t2)<0.

查看答案和解析>>

   如圖,在底面為直角梯形的四棱錐,平面,,

⑴求證:

⑵求直線與平面所成的角;

⑶設(shè)點(diǎn)在棱上,,

∥平面,求的值.

 

 

第4頁(yè)(共6頁(yè))

 
 

 

查看答案和解析>>

 設(shè)函數(shù).

      (Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)是否存在實(shí)數(shù),使得關(guān)于的不等式的解集為?若存在,求的取值范圍;若不存在,試說明理由.

 

 

 

 

 

 

第5頁(yè)(共6頁(yè))

 
 

 

查看答案和解析>>

 對(duì)于給定數(shù)列,如果存在實(shí)常數(shù),使得對(duì)于任意都成立,我們稱數(shù)列是 “類數(shù)列”.

(Ⅰ)已知數(shù)列是 “類數(shù)列”且,求它對(duì)應(yīng)的實(shí)常數(shù)的值;

(Ⅱ)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.并判斷是否為“類數(shù)列”,說明理由.

 

第3頁(yè)(共6頁(yè))

 
 

 

查看答案和解析>>

 如圖,已知平面平面,是平面與平面

交線上的兩個(gè)定點(diǎn),,且,

,,在平面上有一個(gè)動(dòng)點(diǎn),

使得,則的面積的最大值是(    ) 

第2頁(yè)(共6頁(yè))

 
 A      B      C       D  24

 

查看答案和解析>>

 

 

 

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有 一項(xiàng)是符合題目要求的。

1.B  2.D  3.B  4.C  5.C  6.A  7.A  8.B  9.D 10.C

二、填空題:本大題共5個(gè)小題,每小題4分,共20分,把答案填在題中的橫線上。

11.6    12.2   13.80   14.  15.4

三、解答題:本大題共6小題,共75分。解答應(yīng)寫文字說明,證明過程或演算步驟.

16.解(1)證明:由

………………………………………………4分

(2)由正弦定理得     ∴……① …………6分

  又,=2,       ∴ …………② …………8分

解①②得 ,           …………………………………………10分

  .                                       …………………12分

 

17.解:(1)由, 即=1 , ∴=3,……2分

………………………4分

(2)設(shè),∴  ………①

………②………………………………7分

①-②得

           =

           =……………………………………………10分

, ∴.……………………12分

 

 

 

18.解:(1)分別取BE、AB的中點(diǎn)M、N,

連接PM、MC,PN、NC,則PM=1,MB=,BC=,

∴MC=,而PN=MB=,

NC=,∴PC=,…………………………4分

故所求PC與AB所成角的余弦值為………6分

(2)連結(jié)AP,∵二面角E-AB-C是直二面角,且AC⊥AB

∴∠BAP即為所求二面角的平面角,即∠BAP=300……8分

在RtΔBAF中,tan∠ABF=,∴∠ABF=600,

故BF⊥AP,    …………………………………………………………10分

又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC…………………………12分

 

18.另解:分別以AB、AC、AF為x、y、z軸建立直角坐標(biāo)系,

  ∴

,  ∴

故異面直線PC與AB所成的角的余弦值為。

(2)分別設(shè)平面ABC和平面PAC的法向量分別為,P點(diǎn)坐標(biāo)設(shè)為,則,則由

,

再由

,,

,即

BF⊥AP,BF⊥AC∴BF⊥平面PAC

19.解:(1)當(dāng)0<x≤10時(shí),……2分

當(dāng)x >10時(shí),…………4分

…………………………………5分

(2)①當(dāng)0<x≤10時(shí),由

當(dāng)

∴當(dāng)x=9時(shí),W取最大值,且……9分

②當(dāng)x>10時(shí),W=98

當(dāng)且僅當(dāng)…………………………12分

綜合①、②知x=9時(shí),W取最大值.

所以當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝生產(chǎn)中獲利最大.……13分

 

20.解: (1)………………………2分

   ………4分

  

(也可寫成閉區(qū)間)…………6分

(2)  ……………………8分

不等式組所確定的平面區(qū)域如圖所示!10分

設(shè)

……………………………………13分

 

 

21.(1)B(0,-b)

,即D為線段FP的中點(diǎn).,

……………………………2分

,即A、B、D共線.

而 

,得,………………………4分

………………………………5分

 

(2)∵=2,而,∴,

故雙曲線的方程為………①………………………………6分

∴B的坐標(biāo)為(0,-1)      

 

設(shè)的方程為…………②

②代入①得

由題意得:   得:…………9分

設(shè)M、N的坐標(biāo)分別為(x1,y1) 、(x2,y2)

      

       ………11分

整理得, 解得: (舍去)

∴所求的方程為………………………………13分

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案