題目列表(包括答案和解析)
(坐標(biāo)系與參數(shù)方程選做題)已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線的距離為_______
(坐標(biāo)系與參數(shù)方程選做題) 已知圓的極坐標(biāo)方程,直線的極坐標(biāo)方程為,則圓心到直線距離為 。
(坐標(biāo)系與參數(shù)方程選做題)
已知圓的參數(shù)方程為(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,則直線與圓的交點的直角坐標(biāo)為 .
(坐標(biāo)系與參數(shù)方程選做題)已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為
ρcosθ-2ρsinθ+7=0,則圓心到直線的距離為_
一.選擇題:DBBAC DBDBD
解析:1:由sinx>cosx得cosx-sinx<0, 即cos2x<0,所以:+kπ<2x<+kπ,選D.
2:∵復(fù)數(shù)3-i的一個輻角為-π/6,對應(yīng)的向量按順時針方向旋轉(zhuǎn)π/3,
所得向量對應(yīng)的輻角為-π/2,此時復(fù)數(shù)應(yīng)為純虛數(shù),對照各選擇項,選(B)。
3:由又代入選擇支檢驗被排除;又由,即被排除.故選.
4:依題意有, ① ②
由①2-②×2得,,解得。
又由,得,所以不合題意。故選A。
5:令,這兩個方程的曲線交點的個數(shù)就是原方程實數(shù)解的個數(shù).由于直線的斜率為,又所以僅當(dāng)時,兩圖象有交點.由函數(shù)的周期性,把閉區(qū)間分成
共個區(qū)間,在每個區(qū)間上,兩圖象都有兩個交點,注意到原點多計一次,故實際交點有個.即原方程有63個實數(shù)解.故選.
6:連接BE、CE則四棱錐E-ABCD的體積VE-ABCD=×3×3×2=6,又整個幾何體大于部分的體積,所求幾何體的體積V求> VE-ABCD,選(D)
|