(Ⅰ)求...的值及數(shù)列的通項公式, 查看更多

 

題目列表(包括答案和解析)

數(shù)列的前n項和。

   (1)求證:數(shù)列是等比數(shù)列,并求的通項公式;

   (2)如果對任意恒成立,求實數(shù)k的取值范圍。

【解析】本試題主要是考查了等比數(shù)列的定義的運用,以及運用遞推關(guān)系求解數(shù)列通項公式的運用,并且能借助于數(shù)列的和,放縮求證不等式的綜合試題。

 

查看答案和解析>>

數(shù)列的前n項和Sn,且,求:

   (Ⅰ)的值及數(shù)列的通項公式;

   (Ⅱ)的值.

查看答案和解析>>

數(shù)列{an}的前n項和為Sn,且a1=1,an+1=
13
Sn
,n=1,2,3,…,求
(Ⅰ)a2,a3,a4的值及數(shù)列{an}的通項公式;
(Ⅱ)a2+a4+a6+…+a2n的值.

查看答案和解析>>

數(shù)列{an}滿足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常數(shù).
(Ⅰ)當a2=-1時,求λ及a3的值;
(Ⅱ)數(shù)列{an}是否可能為等差數(shù)列?若可能,求出它的通項公式;若不可能,說明理由;
(Ⅲ)求λ的取值范圍,使得存在正整數(shù)m,當n>m時總有an<0.

查看答案和解析>>

17、數(shù)列{an}滿足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常數(shù).
(1)當a2=-1時,求λ及a3的值;
(2)數(shù)列{an}是否可能為等差數(shù)列?若可能,求出它的通項公式,若不可能,說明理由.

查看答案和解析>>

一.選擇題:DBBAC DBDBD

解析:1:由sinx>cosx得cosx-sinx<0, 即cos2x<0,所以:+kπ<2x<+kπ,選D.

 

2:∵復(fù)數(shù)3-i的一個輻角為-π/6,對應(yīng)的向量按順時針方向旋轉(zhuǎn)π/3,

所得向量對應(yīng)的輻角為-π/2,此時復(fù)數(shù)應(yīng)為純虛數(shù),對照各選擇項,選(B)。

3:由代入選擇支檢驗被排除;又由,被排除.故選.

4:依題意有,      ①                 ②

由①2-②×2得,,解得。

又由,得,所以不合題意。故選A。

5:令,這兩個方程的曲線交點的個數(shù)就是原方程實數(shù)解的個數(shù).由于直線的斜率為,又所以僅當時,兩圖象有交點.由函數(shù)的周期性,把閉區(qū)間分成

個區(qū)間,在每個區(qū)間上,兩圖象都有兩個交點,注意到原點多計一次,故實際交點有個.即原方程有63個實數(shù)解.故選.

6:連接BE、CE則四棱錐E-ABCD的體積VE-ABCD=×3×3×2=6,又整個幾何體大于部分的體積,所求幾何體的體積V> VE-ABCD,選(D)

<rt id="c0ee2"><pre id="c0ee2"></pre></rt>
    • <table id="c0ee2"></table>
      <tbody id="c0ee2"><s id="c0ee2"></s></tbody>
      <dd id="c0ee2"><center id="c0ee2"></center></dd>

      8:在同一直角坐標系中,作出函數(shù)

      的圖象和直線,它們相交于(-1,1)

      和(1,1)兩點,由,得.

      9:把各選項分別代入條件驗算,易知B項滿足條件,且的值最小,故選B。

      10:P滿足|MP|=|NP|即P是MN的中垂線上的點,P點存在即中垂線與曲線有交點。MN的中垂線方程為2x+y+3=0,與中垂線有交點的曲線才存在點P滿足|MP|=|NP|,直線4x+2y-1=0與2x+y+3=0平行,故排除(A)、(C),

      又由△=0,有唯一交點P滿足|MP|=|NP|,故選(D)。

      二.填空題:11、; 12、; 13、;14、;15、2;

      解析: 11:由題設(shè),此人猜中某一場的概率為,且猜中每場比賽結(jié)果的事件為相互獨立事件,故某人全部猜中即獲得特等獎的概率為

      12:分類求和,得

          ,故應(yīng)填

      13:依拋物線的對稱性可知,大圓的圓心在y軸上,并且圓與拋物線切于拋物線的頂點,從而可設(shè)大圓的方程為 

          由  ,消去x,得        (*)

      解出

          要使(*)式有且只有一個實數(shù)根,只要且只需要

          再結(jié)合半徑,故應(yīng)填

      14.解:直線 化為直角坐標方程是2x+y-1=0; 圓

      圓心(1,0)到直線2x+y-1=0的距離是

      15.(略)

      三.解答題:

      16、解:(Ⅰ)由, ,

       .-----------------------6分

      (Ⅱ) 原式=  

       -----------------------12分

       

      17、 (Ⅰ)證明:∵函數(shù)是奇函數(shù)  ∴

      ∴函數(shù)不是上的增函數(shù)--------------------------------2分

      又函數(shù)上單調(diào)  ∴函數(shù)上的單調(diào)減函數(shù)-------------------4分

         (Ⅱ)由----------6分

      由(Ⅰ)知函數(shù)上的單調(diào)減函數(shù)  ∴----------------8分

      ,--------------------------------10分

       ∴原不等式的解集為--------------------------12分

      18、解:(Ⅰ)  

      所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

       (Ⅱ) 證明:據(jù)題意x1<x2<x3,

      由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

      …………………8分

      即ㄓ是鈍角三角形……………………………………..9分

      (Ⅲ)假設(shè)ㄓ為等腰三角形,則只能是

       

        ①          …………………………………………..12分

      而事實上,    ②

      由于,故(2)式等號不成立.這與式矛盾.

      所以ㄓ不可能為等腰三角形. ……………………………….14分

      19、解:(Ⅰ)經(jīng)計算,,.    …………….2分

      為奇數(shù)時,,即數(shù)列的奇數(shù)項成等差數(shù)列,

      ;  …………………………….4分                   

      為偶數(shù),,即數(shù)列的偶數(shù)項成等比數(shù)列,

      .…………………………….6分                            

      因此,數(shù)列的通項公式為. ………………………7分

      (Ⅱ),                             

         ……(1)

       …(2)

      (1)、(2)兩式相減,

           

         .……………………………….14分

      20、(I)證明:連結(jié)OC

      …………….1分

      ……….2分

      中,由已知可得

      ……….3分

      平面…………………………….5分

      (II)解:如圖建立空間直角坐標系,設(shè)平面ACD的法向量為

            

               …………………….7分

       

             令是平面ACD的一個法向量!.8分

             又

             點E到平面ACD的距離

             …………………….10分

      (III)     ;

       

        則二面角A-CD-B的余弦值為。…………………………….14分

      21.解 (Ⅰ)由,                 -----------1分

      時,,

      此時,,   -----------2分

      ,所以是直線與曲線的一個切點;      -----------3分

      時,,

      此時,,            -----------4分

      ,所以是直線與曲線的一個切點;       -----------5分

      所以直線l與曲線S相切且至少有兩個切點;

      對任意xR,,

      所以        ---------------------------------------------------------------------6分

      因此直線是曲線的“上夾線”.        ----------7分

      (Ⅱ)推測:的“上夾線”的方程為       ------9分

      ①先檢驗直線與曲線相切,且至少有兩個切點:設(shè):

       ,

      ,得:(kZ)             ------10分

      時,

      故:過曲線上的點(,)的切線方程為:

      y-[]= [-()],化簡得:

      即直線與曲線相切且有無數(shù)個切點.    -----12分

      不妨設(shè)

      ②下面檢驗g(x)F(x)

      g(x)-F(x)=

      直線是曲線的“上夾線”.           -----14分


      同步練習冊答案