(2) 若=2,過點(diǎn)B的直線交雙曲線的左右支于M.N兩點(diǎn),且△OMN的面積=,求的方程. 查看更多

 

題目列表(包括答案和解析)

雙曲線的左、右焦點(diǎn)分別為F1、F2,O為坐標(biāo)原點(diǎn),點(diǎn)A在雙曲線的右支上,點(diǎn)B在雙曲線的左準(zhǔn)線上,,
(1)求雙曲線的離心率e;
(2)若此雙曲線過C(2,),求雙曲線的方程;
(3)在(2)的條件下,D1、D2分別是雙曲線的虛軸端點(diǎn)(D2在y軸正半軸上),過D1的直線l交雙曲線于點(diǎn)M、N,,求直線l的方程.

查看答案和解析>>

雙曲線的左、右焦點(diǎn)分別為F1、F2,O為坐標(biāo)原點(diǎn),點(diǎn)A在雙曲線的右支上,點(diǎn)B在雙曲線左準(zhǔn)線上,

   (1)求雙曲線的離心率e;

   (2)若此雙曲線過C(2,),求雙曲線的方程;

   (3)在(2)的條件下,D1、D2分別是雙曲線的虛軸端點(diǎn)(D2在y軸正半軸上),過D1的直線l交雙曲線M、N,的方程。

查看答案和解析>>

雙曲線的左、可焦點(diǎn)分別為F1、F2,O為坐標(biāo)原點(diǎn),點(diǎn)A在雙曲線的右支下,點(diǎn)B在雙曲線左準(zhǔn)線上,

   (1)求雙曲線的離心率e;

   (2)若此雙曲線過C(2,),求雙曲線的方程;

   (3)在(2)的條件下,D1、D2分別是雙曲線的虛軸端點(diǎn)(D2在y軸正半軸上),過D1的直線l交雙曲線M、N,的方程.

查看答案和解析>>

雙曲線的左、右焦點(diǎn)分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4-2
D.5-2

查看答案和解析>>

雙曲線的左、右焦點(diǎn)分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4-2
D.5-2

查看答案和解析>>

 

 

 

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有 一項(xiàng)是符合題目要求的。

1.B  2.D  3.B  4.C  5.C  6.A  7.A  8.B  9.D 10.C

二、填空題:本大題共5個(gè)小題,每小題4分,共20分,把答案填在題中的橫線上。

11.6    12.2   13.80   14.  15.4

三、解答題:本大題共6小題,共75分。解答應(yīng)寫文字說明,證明過程或演算步驟.

16.解(1)證明:由

………………………………………………4分

(2)由正弦定理得     ∴……① …………6分

  又,=2,       ∴ …………② …………8分

解①②得 ,           …………………………………………10分

  .                                       …………………12分

 

17.解:(1)由, 即=1 , ∴=3,……2分

………………………4分

(2)設(shè),∴  ………①

………②………………………………7分

①-②得

           =

           =……………………………………………10分

, ∴.……………………12分

 

 

 

18.解:(1)分別取BE、AB的中點(diǎn)M、N,

連接PM、MC,PN、NC,則PM=1,MB=,BC=,

∴MC=,而PN=MB=,

NC=,∴PC=,…………………………4分

故所求PC與AB所成角的余弦值為………6分

(2)連結(jié)AP,∵二面角E-AB-C是直二面角,且AC⊥AB

∴∠BAP即為所求二面角的平面角,即∠BAP=300……8分

在RtΔBAF中,tan∠ABF=,∴∠ABF=600,

故BF⊥AP,    …………………………………………………………10分

又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC…………………………12分

 

18.另解:分別以AB、AC、AF為x、y、z軸建立直角坐標(biāo)系,

  ∴

,  ∴

故異面直線PC與AB所成的角的余弦值為。

(2)分別設(shè)平面ABC和平面PAC的法向量分別為,P點(diǎn)坐標(biāo)設(shè)為,則,則由

,

再由

,

,即

BF⊥AP,BF⊥AC∴BF⊥平面PAC

19.解:(1)當(dāng)0<x≤10時(shí),……2分

當(dāng)x >10時(shí),…………4分

…………………………………5分

(2)①當(dāng)0<x≤10時(shí),由

當(dāng)

∴當(dāng)x=9時(shí),W取最大值,且……9分

②當(dāng)x>10時(shí),W=98

當(dāng)且僅當(dāng)…………………………12分

綜合①、②知x=9時(shí),W取最大值.

所以當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝生產(chǎn)中獲利最大.……13分

 

20.解: (1)………………………2分

   ………4分

  

(也可寫成閉區(qū)間)…………6分

(2)  ……………………8分

不等式組所確定的平面區(qū)域如圖所示!10分

設(shè)

……………………………………13分

 

 

21.(1)B(0,-b)

,即D為線段FP的中點(diǎn).,

……………………………2分

,即A、B、D共線.

而 

,得,………………………4分

………………………………5分

 

(2)∵=2,而,∴,

故雙曲線的方程為………①………………………………6分

∴B、的坐標(biāo)為(0,-1)      

 

設(shè)的方程為…………②

②代入①得

由題意得:   得:…………9分

設(shè)M、N的坐標(biāo)分別為(x1,y1) 、(x2,y2)

      

       ………11分

整理得, 解得: (舍去)

∴所求的方程為………………………………13分

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案