A.1:3 B. C. D. 查看更多

 

題目列表(包括答案和解析)

A.1個               B.2個            C.3個                 D.4個

 

查看答案和解析>>

A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線的距離的最小值是   
B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是   
C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是   

查看答案和解析>>

A.1個B.2個C.3個D.4個

查看答案和解析>>

A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線數(shù)學公式的距離的最小值是________.
B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是________.
C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是________.

查看答案和解析>>

=
[     ]
A.1
B.2
C.3
D.4

查看答案和解析>>

一、選擇題:

DDCBA  BBDDA

ycy

11.0     12.(±1,0)    13.1    14.②④      15 706

三、解答題:

16.解:    2分

(Ⅰ)                                                        4分

(Ⅱ)由

單調(diào)遞增區(qū)間為                    8分

(Ⅲ)

                          12分

17.解:(Ⅰ)                        6分

<track id="oqlyr"><input id="oqlyr"></input></track>
<span id="oqlyr"><kbd id="oqlyr"><p id="oqlyr"></p></kbd></span>
<ol id="oqlyr"><form id="oqlyr"><tt id="oqlyr"></tt></form></ol>

18.解:(Ⅰ)證明:∵PA⊥平面ABCD   ∴PA⊥BD

∵ABCD為正方形   ∴AC⊥BD

∴BD⊥平面PAC又BD在平面BPD內(nèi),

∴平面PAC⊥平面BPD      6分

(Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND為二面角B―PC―D的平面角,

在△BND中,BN=DN=,BD=

∴cos∠BND =                             12分

解法二:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標系如圖,在平面BCP內(nèi)作BN⊥PC垂足為N連DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND為二面角B―PC―D的平面角                                8分

                          10分

           12分

解法三:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,

<abbr id="oqlyr"><xmp id="oqlyr">

                                10分

    ∵二面角B―PC―D的平面角與∠MAN互補

    ∴二面角B―PC―D的余弦值為                                 12分

    19.解:(Ⅰ)

              4分

    又∵當n = 1時,上式也成立,             6分

    (Ⅱ)              8分

         ①

         ②

    ①-②得:

                                                 12分

    20.解:(Ⅰ)由MAB的中點,

    A、B兩點的坐標分別為

    ,

    M點的坐標為                                 4分

    M點的直線l上:

                                                      7分

    (Ⅱ)由(Ⅰ)知,不妨設橢圓的一個焦點坐標為關(guān)于直線l

    上的對稱點為

    則有                       10分

    由已知

    ,∴所求的橢圓的方程為                       12分

    21.解:(Ⅰ)∵函數(shù)f(x)圖象關(guān)于原點對稱,∴對任意實數(shù)x

    ,

                                2分

                         4分

    (Ⅱ)當時,圖象上不存在這樣的兩點使結(jié)論成立               5分

    假設圖象上存在兩點,使得過此兩點處的切線互相垂直,則由

    ,知兩點處的切線斜率分別為:

    此與(*)相矛盾,故假設不成立                                   9分

    (Ⅲ)證明:,

    在[-1,1]上是減函數(shù),且

    ∴在[-1,1]上,時,

        14分


    同步練習冊答案