(Ⅲ)若的最大值與最小值之和為3.求的值 查看更多

 

題目列表(包括答案和解析)

(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個內(nèi)角為,周長為定值p,求面積S的最大值;
(3)為了研究邊長a,b,c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,則S≤36,但是,其中等號成立的條件是c2=a2+b2,a=9,b=8,于是c2=145與3≤c≤4矛盾,所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)稱為三角形面積的海倫公式,它已經(jīng)被證明是正確的)

查看答案和解析>>

(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個內(nèi)角為,周長為定值p,求面積S的最大值;
(3)為了研究邊長a,b,c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,則S≤36,但是,其中等號成立的條件是c2=a2+b2,a=9,b=8,于是c2=145與3≤c≤4矛盾,所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)稱為三角形面積的海倫公式,它已經(jīng)被證明是正確的)

查看答案和解析>>

若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=
2
2

查看答案和解析>>

若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.

查看答案和解析>>

若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.

查看答案和解析>>

一、選擇題:

DDCBA  BBDDA

ycy

11.0     12.(±1,0)    13.1    14.②④      15 706

三、解答題:

16.解:    2分

(Ⅰ)                                                        4分

(Ⅱ)由

單調(diào)遞增區(qū)間為                    8分

(Ⅲ)

                          12分

17.解:(Ⅰ)                        6分

18.解:(Ⅰ)證明:∵PA⊥平面ABCD   ∴PA⊥BD

∵ABCD為正方形   ∴AC⊥BD

∴BD⊥平面PAC又BD在平面BPD內(nèi),

∴平面PAC⊥平面BPD      6分

(Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND為二面角B―PC―D的平面角,

在△BND中,BN=DN=,BD=

∴cos∠BND =                             12分

解法二:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系如圖,在平面BCP內(nèi)作BN⊥PC垂足為N連DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND為二面角B―PC―D的平面角                                8分

設(shè)

                          10分

           12分

解法三:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標(biāo)系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,

      •                             10分

        ∵二面角B―PC―D的平面角與∠MAN互補

        ∴二面角B―PC―D的余弦值為                                 12分

        19.解:(Ⅰ)

                  4分

        又∵當(dāng)n = 1時,上式也成立,             6分

        (Ⅱ)              8分

             ①

             ②

        ①-②得:

                                                     12分

        20.解:(Ⅰ)由MAB的中點,

        設(shè)A、B兩點的坐標(biāo)分別為

        M點的坐標(biāo)為                                 4分

        M點的直線l上:

                                                          7分

        (Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個焦點坐標(biāo)為關(guān)于直線l

        上的對稱點為,

        則有                       10分

        由已知

        ,∴所求的橢圓的方程為                       12分

        21.解:(Ⅰ)∵函數(shù)f(x)圖象關(guān)于原點對稱,∴對任意實數(shù)x,

        ,

                                    2分

                             4分

        (Ⅱ)當(dāng)時,圖象上不存在這樣的兩點使結(jié)論成立               5分

        假設(shè)圖象上存在兩點,使得過此兩點處的切線互相垂直,則由

        ,知兩點處的切線斜率分別為:

        此與(*)相矛盾,故假設(shè)不成立                                   9分

        (Ⅲ)證明:,

        在[-1,1]上是減函數(shù),且

        ∴在[-1,1]上,時,

            14分


        同步練習(xí)冊答案