給出下列命題: 查看更多

 

題目列表(包括答案和解析)

給出下列命題:
①若a,b∈R+,a≠b則a3+b3>a2b+ab2
②若a,b∈R+,a<b,則
a+m
b+m
a
b

③若a,b,c∈R+,則
bc
a
+
ac
b
+
ab
c
≥a+b+c

④若3x+y=1,則
1
x
+
1
y
≥4+2
3

其中正確命題的個(gè)數(shù)為(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

給出下列命題:
(1)存在實(shí)數(shù)x,使sinx+cosx=
3
2
;
(2)若α,β是第一象限角,且α>β,則cosα<cosβ;
(3)函數(shù)y=sin(
2
3
x+
π
2
)
是偶函數(shù);
(4)函數(shù)f(x)=(1+cos2x)sin2x,x∈R,則f(x)是周期為
π
2
的偶函數(shù).
(5)函數(shù)y=cos(x+
π
3
)
的圖象是關(guān)于點(diǎn)(
π
6
,0)
成中心對(duì)稱(chēng)的圖形
其中正確命題的序號(hào)是
 
 (把正確命題的序號(hào)都填上)

查看答案和解析>>

給出下列命題:
①|(zhì)
a
-
b
|≤|
a
|-|
b
|;②
a
,
b
共線(xiàn),
b
,
c
平,則
a
c
為平行向量;③
a
,
b
c
為相互不平行向量,則(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,則△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,則
a
⊥(
b
-
c
)   
其中錯(cuò)誤的有
 

查看答案和解析>>

給出下列命題:
①存在實(shí)數(shù)α使sinα•cosα=1成立;
②存在實(shí)數(shù)α使sinα+cosα=
3
2
成立;
③函數(shù)y=sin(
2
-2x)
是偶函數(shù);
x=
π
8
是函數(shù)y=sin(2x+
4
)
的圖象的一條對(duì)稱(chēng)軸的方程;
⑤在△ABC中,若A>B,則sinA>sinB.
其中正確命題的序號(hào)是
 
(注:把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

2、給出下列命題:
(1)直線(xiàn)a與平面α不平行,則a與平面α內(nèi)的所有直線(xiàn)都不平行;
(2)直線(xiàn)a與平面α不垂直,則a與平面α內(nèi)的所有直線(xiàn)都不垂直;
(3)異面直線(xiàn)a、b不垂直,則過(guò)a的任何平面與b都不垂直;
(4)若直線(xiàn)a和b共面,直線(xiàn)b和c共面,則a和c共面.其中錯(cuò)誤命題的個(gè)數(shù)為
3

查看答案和解析>>

一、選擇題(本大題共10小題,每小題5分,共50分;每個(gè)小題給出四個(gè)選項(xiàng),只有一項(xiàng)符合要求)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

B

D

B

B

B

A

D

二、填空題(本大題共5個(gè)小題,每小題5分,共25分)。

11、;12、;13、;14、();15、①③④

三、解答題(本大題共6小題,共75分,解答題應(yīng)寫(xiě)出必要的文字說(shuō)明,證明過(guò)程或演算步驟).

16.解:(1)經(jīng)過(guò)各交叉路口遇到紅燈,相當(dāng)于獨(dú)立重復(fù)試驗(yàn),∴恰好遇到3次紅燈概率為……………………………………………………(6分)

   (2)記“經(jīng)過(guò)交叉路口遇到紅燈”事件為A,張華在第1、2個(gè)交叉路口未遇到紅燈,在第3個(gè)交叉路口遇到紅燈的概率為:

………………………………………………………(12分)

17.解:(1)∵

,∴ ……………………………………………………2分

的等比中項(xiàng)為2,∴

,∴,∴,…………………………………4分

………………………………………………………6分

(2)……………………………………………………8分

………………………………………………………………10分

  ………………………………………………………12分

18.(1)解:由

 

    ∴ 

    ∴……………………………………………8分

(2)

……………………12分

19.解法一(幾何法)

(1)證明:∵E是CD中點(diǎn)

∴ED=AD=1

∴∠AED=45°

同理∠CEB=45°

∴∠BEA=90°  ∴EB⊥EA

∵平面D1AE⊥平面ABCE

∴EB⊥平面D1AE,AD1平面D1AE

∴EB⊥AD1……4分

(2)設(shè)O是AE中點(diǎn),連結(jié)OD1,因?yàn)槠矫?sub>

  過(guò)O作OF⊥AB于F點(diǎn),連結(jié)D1F,則D1F⊥AB,∴∠D1FO就是二面角D1-AB-E的平面角.

  在Rt△D1OF中,D1O=,OF=

,即二面角D1-AB-E等于………………………9分

(3)延長(zhǎng)FO交CD于G,過(guò)G作GH⊥D1F于H點(diǎn),

∵AB⊥平面D1FG  ∴GH⊥平面D1BA,

∵CE//AB   ∴CE//平面D1BA.

∴C到平面D1BA的距離等于GH.

又D1F=

∵FG?D1O=D1F?GH

∴GH=  即點(diǎn)   ………………………13分 

另解:在Rt△BED1中,BD1=. 又AD1=1,AB=2

   ∴∠BD1A=90°  ∴

設(shè)點(diǎn)C到平面ABD1的距離為h 則

  

…………………………………13分

解法二:(向量法)

(1)證明:取AE的中點(diǎn)O,AB的中點(diǎn)F,連結(jié)D1O、OF,則OF//BE。

∵ DE=DA=1  ∴∠AED=45°

 同理∠BEC=45° ∴∠BEA=90° ∴BE⊥EA  ∴OF⊥AE 

由已知D1O⊥EA 

又平面O1AE⊥平面ABCE,∴D1O⊥平面ABCE,以O(shè)為坐標(biāo)原點(diǎn),OF、OA、OD1所在直線(xiàn)分別為x、y、z軸,建立空間直角坐標(biāo)系。則B(),E(),D1),A(),C(

?=()?()=0

………………………………………………4分

(2)解:設(shè)平面ABD1的一個(gè)法向量為

,則y=1,z=1

 …………………………………………………………………6分

∵ OD⊥平面ABCE.

是平面ABE的一個(gè)法向量.

即二面角D1-AB-E等于.  ………………………9分

(3)設(shè)點(diǎn)C到平面ABD1的距離為d,

……………………………………………………………13分

20.解:(1)因?yàn)?sub>在區(qū)間(,-2]上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減,所以方程f′(x)的兩根滿(mǎn)足,…………2分

,得,所以,而,故b=0………………4分

,從而

……………………………………………………………………6分

(2)對(duì)任意的t1,t2[m-2,m],不等式恒成立,等價(jià)于在區(qū)間[m-2,m]上,當(dāng)0<m2時(shí),[m-2,m][ -2,2],所以在區(qū)間[m-2,m]上單調(diào)遞減,

……………………………………………9分

解得 ……………………………………………………………………11分

,∴,∴m的最小值是 ……………………………………13分

21.解:(1)當(dāng)AC垂直于x軸時(shí),  由橢圓定義,有

  ………………………………………………………………2分

在Rt△AF1F中,

  ∴  ∴…………………………………………4分

(2)由得:

  ∴  ∴橢圓方程為

   設(shè),,

(i)若直線(xiàn)AC的斜率存在,則直線(xiàn)AC方程為

  代入橢圓方程有:

  ∴

由韋達(dá)定理得:所以 ………………………8分

于是 同理可得:

……………………………………………………………………12分

(ii)若直線(xiàn)AC⊥x軸,,,這時(shí),

綜上可知,是定值6  …………………………………………………………13分

 


同步練習(xí)冊(cè)答案