① ②兩式聯(lián)立可求得點Q的坐標為 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在平面直角坐標系中,已知動點P(x,y),PM⊥y軸,垂足為M,點N與點P關于x軸對稱,
OP
MN
=4

(1)求動點P的軌跡W的方程;
(2)若點Q的坐標為(2,0),A、B為W上的兩個動點,且滿足QA⊥QB,點Q到直線AB的距離為d,求d的最大值.

查看答案和解析>>

已知A、B分別是x軸和y軸上的兩個動點,滿足|AB|=2,點P在線段AB上,且
AP
=t
PB
(t是不為0的常數(shù)),設點P的軌跡方程為C.
(Ⅰ)求點P的軌跡方程C;
(Ⅱ)若曲線C為焦點在x軸上的橢圓,試求實數(shù)t的取值范圍;
(Ⅲ)若t=2,點M、N是C上關于原點對稱的兩個動點,點Q的坐標為(
3
2
,3)
,求△QMN的面積S的最大值.

查看答案和解析>>

已知點Q是拋物線C1:y2=2px(P>0)上異于坐標原點O的點,過點Q與拋物線C2:y=2x2相切的兩條直線分別交拋物線C1于點A,B.
(Ⅰ)若點Q的坐標為(1,-6),求直線AB的方程及弦AB的長;
(Ⅱ)判斷直線AB與拋物線C2的位置關系,并說明理由.

查看答案和解析>>

已知A、B分別是x軸和y軸上的兩個動點,滿足|AB|=2,點P在線段AB上且
AP
=2
PB
,設點P的軌跡方程為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若點M、N是曲線C上關于原點對稱的兩個動點,點Q的坐標為(
3
2
,3)
,求△QMN的面積S的最大值.

查看答案和解析>>

兩圓(x+1)2+(y-1)2=r2和(x-2)2+(y+2)2=R2相交于P、Q兩點,若點P坐標為(1,2),則點Q的坐標為
(-2,-1)
(-2,-1)

查看答案和解析>>


同步練習冊答案