在中.面積(1)求BC邊的長(zhǎng)度, 查看更多

 

題目列表(包括答案和解析)

在△ABC中,,面積

(1)求BC邊的長(zhǎng)度;

(2)求值:

查看答案和解析>>

 如圖,矩形ABCD中,AB=6,BC=2,點(diǎn)O是AB的中點(diǎn),點(diǎn)P在AB的延長(zhǎng)線上,且BP=3.一動(dòng)點(diǎn)E從O點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿OA勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即以原速度沿AO返回;另一動(dòng)點(diǎn)F從P點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線PA勻速運(yùn)動(dòng),點(diǎn)E、F同時(shí)出發(fā),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).

(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過(guò)點(diǎn)C時(shí),求運(yùn)動(dòng)時(shí)間t的值;

(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;

 

 

 

查看答案和解析>>

在△ABC中,b=4,A=,面積S=2
(1)求BC邊的長(zhǎng)度;   
(2)求值:

查看答案和解析>>

在△ABC中,b=4,A=
π
3
,面積S=2
3

(1)求BC邊的長(zhǎng)度;   
(2)求值:
sin2(
A
4
+
π
4
)+ccos2B
1
tan
C
2
+tan
C
2

查看答案和解析>>

(本題11分)如圖,矩形ABCD中,AB=6,BC=2,點(diǎn)O是AB的中點(diǎn),點(diǎn)P在AB的延長(zhǎng)線上,且BP=3.一動(dòng)點(diǎn)E從O點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿OA勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即以原速度沿AO返回;另一動(dòng)點(diǎn)F從P點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線PA勻速運(yùn)動(dòng),點(diǎn)E、F同時(shí)出發(fā),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).

(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過(guò)點(diǎn)C時(shí),求運(yùn)動(dòng)時(shí)間t的值;

(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;

 

 

查看答案和解析>>

一、選擇題

C B B A B   A A A DD    C C

二、填空題

13.                               14.  ―4                     15. 2880                     16.①③

17.解,由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為   ….3分

①當(dāng)n=3時(shí),的概率為    …6分

時(shí),有

它的概率為     ….12分

18.解: (1)解:在中  

                                                 2分

    4分

 

      

                                                       6分

 

(2)=

     12分

 

19. (法一)(1)證明:取中點(diǎn),連接

       ∵△是等邊三角形,∴,

       又平面⊥平面,

       ∴⊥平面,∴在平面內(nèi)射影是,

       ∵=2,,,

       ∴△∽△,∴

       又°,∴°,

       ∴°,∴,

       由三垂線定理知        ……….(6分)

(2)取AP的中點(diǎn)E及PD的中點(diǎn)F,連ME、CF則CFEM為平行四邊形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D為900.(12分)

20.解:(1)

                  2分

 

-1

(x)

-

0

+

0

-

(x)

極小值0

極大值

                               6分

 

(2)

                                         8分

 

                                                              12分

 

21.Ⅰ)由題知點(diǎn)的坐標(biāo)分別為,,

于是直線的斜率為,

所以直線的方程為,即為.…………………4分

 

(Ⅱ)設(shè)兩點(diǎn)的坐標(biāo)分別為,

,

所以

于是

點(diǎn)到直線的距離,

所以.

因?yàn)?sub>,于是

所以的面積范圍是.         …………………………………8分

(Ⅲ)由(Ⅱ)及,,得

,,

于是,).

所以

所以為定值.               ……………………………………………12分

22.解(Ⅰ)由得,

數(shù)列{an}的通項(xiàng)公式為      4分

(Ⅱ)

設(shè)      ①

 

      ②

①―②得

=

 

即數(shù)列的前n項(xiàng)和為           9分

(Ⅲ)解法1:不等式恒成立,

對(duì)于一切的恒成立

設(shè),當(dāng)k>4時(shí),由于對(duì)稱軸,且而函數(shù)是增函數(shù),不等式恒成立

即當(dāng)k<4時(shí),不等式對(duì)于一切的恒成立       14分

解法2:bn=n(2n-1),不等式恒成立,即對(duì)于一切恒成立

而k>4

恒成立,故當(dāng)k>4時(shí),不等式對(duì)于一切的恒成立 (14分)

 


同步練習(xí)冊(cè)答案