查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an

(Ⅲ)  設bn=(32n-8),求數(shù)列{bn}的前項和Tn

查看答案和解析>>

(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標原點到切線的距離為,若x=時,y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分) 已知數(shù)列{an}滿足

   (Ⅰ)求數(shù)列的前三項:a1,a2,a3;

   (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

(Ⅲ)求數(shù)列{an}的前n項和Sn.

查看答案和解析>>

(本題滿分12分)   已知函數(shù)

   (Ⅰ)當的 單調(diào)區(qū)間;

   (Ⅱ)當的取值范圍。

查看答案和解析>>

一、選擇題

C B B A B   A A A DD    C C

二、填空題

13.                               14.  ―4                     15. 2880                     16.①③

17.解,由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為   ….3分

①當n=3時,的概率為    …6分

時,有

它的概率為     ….12分

18.解: (1)解:在中  

                                                 2分

    4分

 

      

                                                       6分

 

(2)=

     12分

 

19. (法一)(1)證明:取中點,連接、

       ∵△是等邊三角形,∴,

       又平面⊥平面

       ∴⊥平面,∴在平面內(nèi)射影是,

       ∵=2,,,,

       ∴△∽△,∴

       又°,∴°,

       ∴°,∴,

       由三垂線定理知        ……….(6分)

(2)取AP的中點E及PD的中點F,連ME、CF則CFEM為平行四邊形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D為900.(12分)

20.解:(1)

                  2分

 

-1

(x)

-

0

+

0

-

(x)

極小值0

極大值

                               6分

 

(2)

                                         8分

 

                                                              12分

 

21.Ⅰ)由題知點的坐標分別為,,

于是直線的斜率為,

所以直線的方程為,即為.…………………4分

 

(Ⅱ)設兩點的坐標分別為,

,

所以

于是

到直線的距離,

所以.

因為,于是,

所以的面積范圍是.         …………………………………8分

(Ⅲ)由(Ⅱ)及,,得

,

于是,).

所以

所以為定值.               ……………………………………………12分

22.解(Ⅰ)由得,

數(shù)列{an}的通項公式為      4分

(Ⅱ)

      ①

 

      ②

①―②得

=

 

即數(shù)列的前n項和為           9分

(Ⅲ)解法1:不等式恒成立,

對于一切的恒成立

,當k>4時,由于對稱軸,且而函數(shù)是增函數(shù),不等式恒成立

即當k<4時,不等式對于一切的恒成立       14分

解法2:bn=n(2n-1),不等式恒成立,即對于一切恒成立

而k>4

恒成立,故當k>4時,不等式對于一切的恒成立 (14分)

 


同步練習冊答案