題目列表(包括答案和解析)
數(shù)列的前n項(xiàng)和Sn,當(dāng)的等比中項(xiàng)
(1)求證:對于;
(2)設(shè),求Sn;
(3)對,試證明:S1S2+S2S3+……+SnS
數(shù)列的前n項(xiàng)和記為,前項(xiàng)和記為,對給定的常數(shù),若是與無關(guān)的非零常數(shù),則稱該數(shù)列是“類和科比數(shù)列”,
(理科做以下(1)(2)(3))
(1)、已知,求數(shù)列的通項(xiàng)公式(5分);
(2)、證明(1)的數(shù)列是一個(gè) “類和科比數(shù)列”(4分);
(3)、設(shè)正數(shù)列是一個(gè)等比數(shù)列,首項(xiàng),公比,若數(shù)列是一個(gè) “類和科比數(shù)列”,探究與的關(guān)系(7分)
數(shù)列的前n項(xiàng)和記為,,點(diǎn)在直線上,n∈N*.
(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前n項(xiàng)和,求的值.
數(shù)列{}的前n項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若,數(shù)列的前項(xiàng)和,證明:.
數(shù)列{}的前n項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若,.求不超過的最大整數(shù)的值.
一、選擇題
C B B A B A A A DD C C
二、填空題
13. 14. ―4 15. 2880 16.①③
17.解,由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為 ….3分
①當(dāng)n=3時(shí),的概率為 …6分
②時(shí),有或
它的概率為 ….12分
18.解: (1)解:在中
2分
4分
6分
(2)=
12分
19. (法一)(1)證明:取中點(diǎn),連接、.
∵△是等邊三角形,∴⊥,
又平面⊥平面,
∴⊥平面,∴在平面內(nèi)射影是,
∵=2,,,,
∴△∽△,∴.
又°,∴°,
∴°,∴⊥,
由三垂線定理知⊥ ……….(6分)
(2)取AP的中點(diǎn)E及PD的中點(diǎn)F,連ME、CF則CFEM為平行四邊形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D為900.(12分)
20.解:(1)
2分
-1
(x)
-
0
+
0
-
(x)
減
極小值0
增
極大值
減
6分
(2)
8分
12分
21.Ⅰ)由題知點(diǎn)的坐標(biāo)分別為,,
于是直線的斜率為,
所以直線的方程為,即為.…………………4分
(Ⅱ)設(shè)兩點(diǎn)的坐標(biāo)分別為,
由得,
所以,.
于是.
點(diǎn)到直線的距離,
所以.
因?yàn)?sub>且,于是,
所以的面積范圍是. …………………………………8分
(Ⅲ)由(Ⅱ)及,,得
,,
于是,().
所以.
所以為定值. ……………………………………………12分
22.解(Ⅰ)由得,
數(shù)列{an}的通項(xiàng)公式為 4分
(Ⅱ)
設(shè) ①
②
①―②得
=
即數(shù)列的前n項(xiàng)和為 9分
(Ⅲ)解法1:不等式恒成立,
即對于一切的恒成立
設(shè),當(dāng)k>4時(shí),由于對稱軸,且而函數(shù)在是增函數(shù),不等式恒成立
即當(dāng)k<4時(shí),不等式對于一切的恒成立 14分
解法2:bn=n(2n-1),不等式恒成立,即對于一切恒成立
而k>4
恒成立,故當(dāng)k>4時(shí),不等式對于一切的恒成立 (14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com