所以.所求x的集合為 . -----10分 查看更多

 

題目列表(包括答案和解析)

(2013•涼山州二模)春節(jié)期間,甲乙兩社區(qū)各5人參加社區(qū)服務寫春聯(lián)活動.據(jù)統(tǒng)計得兩社區(qū)5人書寫對聯(lián)數(shù)目如徑葉圖所示.
(1)分別求甲乙兩社區(qū)書寫對聯(lián)數(shù)的平均數(shù);
(2)在對聯(lián)數(shù)不少于10的人中,甲乙兩社區(qū)各抽取1人,記其對聯(lián)數(shù)分別為a,b,設X=|a-b|,求X的值為1時的概率.

查看答案和解析>>

已知數(shù)列是首項為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項公式;

(2)   若抽去數(shù)列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數(shù)列,試寫出數(shù)列的通項公式;

(3) 在(2)的條件下,設數(shù)列的前項和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數(shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項是2,公比為2的等比數(shù)列,即.

此時也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質(zhì)得:

(i)當時,;

(ii) 當時,,

所以

第三問假設存在正整數(shù)n滿足條件,則,

則(i)當時,

 

查看答案和解析>>

求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應給分

 

查看答案和解析>>

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得.

(1)求橢圓的標準方程;           (2)求直線l的方程.

【解析】(1)中利用點F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設出點A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設A(x1,y1)、B(x2,y2).由第(1)問知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

已知定義在[-5,5]上的奇函數(shù)f(x)的部分圖像如下圖所示,則滿足f(x)>0的x的集合為(    )。

查看答案和解析>>


同步練習冊答案