題目列表(包括答案和解析)
(本小題滿分12分)已知函數
(I)若函數在區(qū)間上存在極值,求實數a的取值范圍;
(II)當時,不等式恒成立,求實數k的取值范圍.
(Ⅲ)求證:解:(1),其定義域為,則令,
則,
當時,;當時,
在(0,1)上單調遞增,在上單調遞減,
即當時,函數取得極大值. (3分)
函數在區(qū)間上存在極值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,則,
,即在上單調遞增, (7分)
,從而,故在上單調遞增, (7分)
(8分)
(3)由(2)知,當時,恒成立,即,
令,則, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
在數列中, 記
(Ⅰ)求、、、并推測;
(Ⅱ)用數學歸納法證明你的結論.
【解析】第一問利用遞推關系可知,、、、,猜想可得
第二問中,①當時,=,又,猜想正確
②假設當時猜想成立,即,
當時,
=
=,即當時猜想也成立
兩步驟得到。
(2)①當時,=,又,猜想正確
②假設當時猜想成立,即,
當時,
=
=,即當時猜想也成立
由①②可知,對于任何正整數都有成立
(本小題滿分14分)
已知函數和的圖象在處的切線互相平行.
(1) 求的值;(4分)
(2)設,當時,恒成立,求的取值范圍. (10分)
已知常數且,數列前項和 數列滿足 且
(1)求證:數列是等比數列
(2)若對于區(qū)間上的任意實數,總存在不小于2的自然數,當時,恒成立,求的最小值
已知函數和函
的圖像在處的切線互相平行.
(1)求的值;
(2)設,當時,恒成立,求的取值范圍.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com