②假設(shè)結(jié)論對(duì)成立.即. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

在數(shù)列中,

(Ⅰ)求、并推測(cè);

(Ⅱ)用數(shù)學(xué)歸納法證明你的結(jié)論.

【解析】第一問(wèn)利用遞推關(guān)系可知,、、、,猜想可得

第二問(wèn)中,①當(dāng)時(shí),=,又,猜想正確

②假設(shè)當(dāng)時(shí)猜想成立,即

當(dāng)時(shí),

=

=,即當(dāng)時(shí)猜想也成立

兩步驟得到。

(2)①當(dāng)時(shí),=,又,猜想正確

②假設(shè)當(dāng)時(shí)猜想成立,即,

當(dāng)時(shí),

=

=,即當(dāng)時(shí)猜想也成立

由①②可知,對(duì)于任何正整數(shù)都有成立

 

查看答案和解析>>

已知數(shù)列的前項(xiàng)和為,且 (N*),其中

(Ⅰ) 求的通項(xiàng)公式;

(Ⅱ) 設(shè) (N*).

①證明:

② 求證:.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時(shí),由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對(duì)偶式)設(shè),,

.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

   ②假設(shè)時(shí),命題成立,即,

   則當(dāng)時(shí),

    即

故當(dāng)時(shí),命題成立.

綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以

從而.

也即

 

查看答案和解析>>

已知,(其中

⑴求

⑵試比較的大小,并說(shuō)明理由.

【解析】第一問(wèn)中取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問(wèn)中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),;

猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得,

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;                              …………6分

猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

由上述過(guò)程可知,時(shí)結(jié)論成立,

假設(shè)當(dāng)時(shí)結(jié)論成立,即,

當(dāng)時(shí),

時(shí)結(jié)論也成立,

∴當(dāng)時(shí),成立。                          …………11分

綜上得,當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí), 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案