因此.二面角C-AC1-D的大小為. --12分 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

矩形ABCD中,AB=1,BC=2,沿AC將矩形ABCD折成一個(gè)直二面角B-AC-D,若點(diǎn)A、B、C、D都在一個(gè)以O(shè)為球心的球面上,則球O的表面積為

查看答案和解析>>

精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD.SD=2,AD=
2
,E是SD上的點(diǎn).
(Ⅰ)求證:AC⊥BE;
(Ⅱ)求二面角C-AS-D的余弦值.

查看答案和解析>>

精英家教網(wǎng)已知直三棱柱ABC-A1B1C1中,AC⊥BC,D為AB的中點(diǎn),AC=BC=BB1
(1)求證:BC1∥平面CA1D
(2)求證:平面CA1D⊥平面AA1B1B
(3)求二面角C-DA1-C1的余弦值.

查看答案和解析>>

已知正方形ABCD沿其對(duì)角線AC將△ADC折起,設(shè)AD與平面ABC所成的角為β,當(dāng)β取最大值時(shí),二面角B-AC-D的大小為(  )

查看答案和解析>>


同步練習(xí)冊(cè)答案