故所求雙曲線方程為: . ----------- 14分 查看更多

 

題目列表(包括答案和解析)

已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)設(shè)
6
<m<4
6
,求向量
OF
FQ
的夾角θ
正切值的取值范圍;
(2)設(shè)以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線經(jīng)過點(diǎn)Q(如圖),|
OF
|=c,m=(
6
4
-1)c2
,當(dāng)|
OQ
|
取得最小值時,求此雙曲線的方程.
(3)設(shè)F1為(2)中所求雙曲線的左焦點(diǎn),若A、B分別為此雙曲線漸近線l1、l2上的動點(diǎn),且2|AB|=5|F1F|,求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

.(本小題滿分12分) 已知雙曲線的兩個焦點(diǎn)的坐標(biāo)為、,離心率.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)是(1)中所求雙曲線上任意一點(diǎn),過點(diǎn)的直線與兩漸近線分別交于點(diǎn),若,求的面積.

查看答案和解析>>

求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應(yīng)給分

 

查看答案和解析>>

已知雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,橢圓C以該雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn).
(1)當(dāng)a=
3
,b=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l:y=kx+
1
2
與y軸交于點(diǎn)P,與橢圓交與A,B兩點(diǎn),若O為坐標(biāo)原點(diǎn),△AOP與△BOP面積之比為2:1,求直線l的方程;
(3)若a=1,橢圓C與直線l':y=x+5有公共點(diǎn),求該橢圓的長軸長的最小值.

查看答案和解析>>

已知雙曲線的兩條漸近線方程為直線l1:y=-
x
2
l2:y=
x
2
,焦點(diǎn)在y軸上,實(shí)軸長為2
3
,O為坐標(biāo)原點(diǎn).
(1)求雙曲線方程;
(2)設(shè)P1,P2分別是直線l1和l2上的點(diǎn),點(diǎn)M在雙曲線上,且
P1M
=2
MP2
,求三角形P1OP2的面積.

查看答案和解析>>


同步練習(xí)冊答案