17.已知二次函數(shù)對任意.都有成立.設(shè)向量....當[0.]時.求不等式>的解集. 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)對任意∈R,都有<0且,

(1-)=(1+)成立,設(shè)向量=(sin,2)、b=(2sins,)、c=(cos2,1)、d=(1,2),當是三角形內(nèi)角時,求不等式(?b)> (c?d)的解集.

查看答案和解析>>

(本題滿分12分)已知二次函數(shù)對任意,都有成立,設(shè)向量(sinx,2),(2sinx,),(cos2x,1),(1,2),當[0,]時,求不等式f()>f()的解集.

 

查看答案和解析>>

(本題滿分12分)已知二次函數(shù)對任意,都有成立,設(shè)向量(sinx,2),(2sinx,),(cos2x,1),(1,2),當[0,]時,求不等式f()>f()的解集.

查看答案和解析>>

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0)

(1)求g(x)的表達式;
(2)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
(3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤
18
(x+2)2
成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式.

查看答案和解析>>

一、選擇題

1

2

3

4

5

6

7

8

9

10

11

12

A

C

B

D

A

B

A

B

B

A

C

A

二、填空題:

13. 2560,15     14.12        15.       16.①,④

三、解答題:17.解:設(shè)f(x)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得f(x)的圖象關(guān)于直線x=1對稱,若m>0,則x≥1時,f(x)是增函數(shù),若m<0,則x≥1時,f(x)是減函數(shù).

  ∵ ,,,

,

  ∴ 當時,

  ∵ , ∴ 

  當時,同理可得

  綜上:的解集是當時,為;

  當時,為,或

18.解:(1)由直方圖知,成績在內(nèi)的人數(shù)為:(人)

所以該班成績良好的人數(shù)為27人.

   (2)由直方圖知,成績在的人數(shù)為人,

設(shè)為、;成績在 的人數(shù)為人,設(shè)為、、、.

時,有3種情況;

時,有6種情況;

分別在內(nèi)時,

 

 

A

B

C

D

x

xA

xB

xC

xD

y

yA

yB

yC

yD

z

zA

zB

zC

zD

共有12種情況.

所以基本事件總數(shù)為21種,事件“”所包含的基本事件個數(shù)有12種.

∴P()=              

19.解析:(1)取中點E,連結(jié)ME、

  ∴ ,MCEC. ∴ MC. ∴ ,M,C,N四點共面.

 。2)連結(jié)BD,則BD是在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD.

  ∴ ∠CBD+∠BCM=90°.  ∴ MC⊥BD.  ∴ 

  (3)連結(jié),由是正方形,知

  ∵ ⊥MC, ∴ ⊥平面

  ∴ 平面⊥平面

20.解析:(1).∵ x≥1. ∴ ,

  當x≥1時,是增函數(shù),其最小值為

  ∴ a<0(a=0時也符合題意). ∴ a≤0.

(2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點,極小值點

  此時f(x)在,上時減函數(shù),在,+上是增函數(shù).

∴ f(x)在,上的最小值是,最大值是,(因).

21.解析:(1)證明:將,消去x,得

   ①由直線l與橢圓相交于兩個不同的點,得

所以    (2)解:設(shè)由①,得     因為 

所以,

消去y2,得 化簡,得 

若F是橢圓的一個焦點,則c=1,b2=a2-1

代入上式,解得    所以,橢圓的方程為    

22.解析:解:(1)由   

(2)假設(shè)存在實數(shù)t,使得為等差數(shù)列。則

存在t=1,使得數(shù)列為等差數(shù)列。

(3)由(1)、(2)知:為等差數(shù)列。

 

 


同步練習冊答案