題目列表(包括答案和解析)
如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本試題主要考查了立體幾何中的運用。
(1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE為等腰三角形.
取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =.
連接FG,則FG∥EC,F(xiàn)G⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小為120°
已知向量=(),=(,),其中().函數(shù),其圖象的一條對稱軸為.
(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=,求a的值.
【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。
解:因為
由余弦定理得,……11分故
已知曲線上動點到定點與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;
(3)以曲線的左頂點為圓心作圓:,設(shè)圓與曲線交于點與點,求的最小值,并求此時圓的方程.
【解析】第一問利用(1)過點作直線的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時,檢驗得不符合要求;
當(dāng)直線l的斜率為k時,;,化簡得
第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè).
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)時,取得最小值為.
計算得,,故,又點在圓上,代入圓的方程得到.
故圓T的方程為:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com