A. B.N C. D.M 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點(diǎn),求它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

 

A.(幾何證明選講選做題)

如圖,已知AB為圓O的直徑,BC切圓O于點(diǎn)BAC交圓O于點(diǎn)P,E為線段BC的中點(diǎn).求證:OPPE

B.(矩陣與變換選做題)

已知M,N,設(shè)曲線y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求F的方程.

C.(坐標(biāo)系與參數(shù)方程選做題)

在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長(zhǎng).

D.(不等式選做題)

設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

 

查看答案和解析>>

.M={x | x≤},N={1,2,3,4},則(M∩N)=(   )

A. {4}          B. {3,4}       C. {2,3,4}        D. {1,2,3,4}

 

查看答案和解析>>

   ,則        

    A.      B.      C.M=N          D.以上都錯(cuò)

 

查看答案和解析>>

A.(幾何證明選講選做題)


如圖,已知AB為圓O的直徑,BC切圓O于點(diǎn)BAC交圓O于點(diǎn)P,E為線段BC的中點(diǎn).求證:OPPE

B.(矩陣與變換選做題)
已知MN,設(shè)曲線y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求F的方程.
C.(坐標(biāo)系與參數(shù)方程選做題)
在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長(zhǎng).
D.(不等式選做題)
設(shè)xy均為正數(shù),且xy,求證:2x≥2y+3.

查看答案和解析>>

 

 

一、選擇題:

l         題號(hào)

l        

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

l        

 

1、解析:,N=

.答案:

2、解析:由題意得

答案:

3、解析:程序的運(yùn)行結(jié)果是.答案:

4、解析:與直線垂直的切線的斜率必為4,而,所以,切點(diǎn)為.切線為,即,答案:

5、解析:由一元二次方程有實(shí)根的條件,而,由幾何概率得有實(shí)根的概率為.答案:

6、解析:如果兩條平行直線中的一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面,所以正確;如果兩個(gè)平面與同一條直線垂直,則這兩個(gè)平面平行,所以正確;

如果一個(gè)平面經(jīng)過(guò)了另一個(gè)平面的一條垂線,則這兩個(gè)平面平行,所以也正確;

只有選項(xiàng)錯(cuò)誤.答案:

7、解析:由題意,得,答案:

8、解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉?lái)的.答案:

二、填空題:

l         題號(hào)

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

 

9、解析:若,則,解得

10、解析:由題意

11、解析:

12、解析:令,則,令,則

,則,令,則

,則,令,則,

…,所以

13、解析:;則圓心坐標(biāo)為

由點(diǎn)到直線的距離公式得圓心到直線的距離為,所以要求的最短距離為

14、解析:由柯西不等式,答案:

15、解析:顯然為相似三角形,又,所以的面積等于9cm

 

三、解答題:本大題共6小題,滿分80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程和演算步驟.

16、解: (1),    ……………………… 2分

 ∴,………………………………………………… 4分

 解得.………………………………………………………………… 6分

(2)由,得:,     ……………………… 8分

    ………………………………… 10分

.…………………………………………………………… 12分

17、解:(1)… 2分

的最小正周期,      …………………………………4分

且當(dāng)時(shí)單調(diào)遞增.

的單調(diào)遞增區(qū)間(寫(xiě)成開(kāi)區(qū)間不扣分).……6分

(2)當(dāng)時(shí),當(dāng),即時(shí)

所以.      …………………………9分

的對(duì)稱軸.      …………………12分

18、解:

(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,

記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分

∵“兩球恰好顏色不同”共種可能,…………………………5分

. ……………………………………………………7分

解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn), …………………………2分

∵每次摸出一球得白球的概率為.………………………………5分

∴“有放回摸兩次,顏色不同”的概率為. …………………7分

(2)設(shè)摸得白球的個(gè)數(shù)為,依題意得:

,,

… 10分

,……………………………………12分

.……………………14分

19、(1)證明:  連結(jié),交于點(diǎn),連結(jié).………………………1分

  是菱形, ∴的中點(diǎn). ………………………………………2分

  點(diǎn)的中點(diǎn), ∴.   …………………………………3分

  平面平面, ∴平面.  ……………… 6分

(2)解法一:

 平面,平面,∴ .

,∴.  …………………………… 7分

是菱形,  ∴.

,

平面.  …………………………………………………………8分

,垂足為,連接,則,

所以為二面角的平面角. ………………………………… 10分

,∴,.

在Rt△中,=,…………………………… 12分

.…………………………… 13分

∴二面角的正切值是. ………………………… 14分

解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,……………2分

,,

.  ……………4分

設(shè)平面的一個(gè)法向量為,

,得,

,則,∴.  …………………7分   

平面,平面,

.  ………………………………… 8分

,∴.

是菱形,∴.

,∴平面.…………………………… 9分

是平面的一個(gè)法向量,.………………… 10分

,

,  …………………… 12分 

.…………………………………… 13分 

∴二面角的正切值是.  ……………………… 14分

20、解:圓的方程為,則其直徑長(zhǎng),圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè)

,   ………………………………2分

.  ……………………4分

…6分

, ………… 7分

因此.    ………………………………… 8分

據(jù)等差,,  …………… 10分

所以,,…………… 12分

即:方程為.   …………………14分

21、解:

(1)因?yàn)?sub>, …………………………2分 

所以,滿足條件.   …………………3分

又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根

所以函數(shù)是集合M中的元素. …………………………4分

(2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根

同步練習(xí)冊(cè)答案