一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.(1)采取放回抽樣方式.從中摸出兩個(gè)球.求兩球恰好顏色不同的概率,(2)采取不放回抽樣方式.從中摸出兩個(gè)球.求摸得白球的個(gè)數(shù)的期望和方差. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)一個(gè)口袋中裝有個(gè)紅球和5個(gè)白球,一次摸獎(jiǎng)從中摸兩球,兩個(gè)球顏色不同則為中獎(jiǎng)。

(1)試用 表示一次摸獎(jiǎng)中獎(jiǎng)的概率;

(2)若,求三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率;

(3)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為,當(dāng)取多少時(shí),最大?

 

查看答案和解析>>

(本小題滿分14分)

一個(gè)口袋中裝有大小相同的二個(gè)白球:,三個(gè)黑球:

(Ⅰ)若從口袋中隨機(jī)地摸出一個(gè)球,求恰好是白球的概率;

(Ⅱ)若從口袋中一次隨機(jī)地摸出兩個(gè)球,求恰好都是白球的概率.

 

查看答案和解析>>

(本小題滿分14分)一個(gè)口袋中裝有個(gè)紅球和5個(gè)白球,一次摸獎(jiǎng)從中摸兩球,兩個(gè)球顏色不同則為中獎(jiǎng)。
(1)試用表示一次摸獎(jiǎng)中獎(jiǎng)的概率;
(2)若,求三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率;
(3)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為,當(dāng)取多少時(shí),最大?

查看答案和解析>>

(本小題滿分14分)
一個(gè)口袋中裝有大小相同的二個(gè)白球:,三個(gè)黑球:
(Ⅰ)若從口袋中隨機(jī)地摸出一個(gè)球,求恰好是白球的概率;
(Ⅱ)若從口袋中一次隨機(jī)地摸出兩個(gè)球,求恰好都是白球的概率.

查看答案和解析>>

(本小題滿分14分)

 一個(gè)口袋中裝有大小相同的2個(gè)白球和3個(gè)黑球.

。1)從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;

(2)從中摸出一個(gè)球,放回后再摸出一個(gè)球,求兩球恰好顏色不同的概率.

查看答案和解析>>

 

 

一、選擇題:

l         題號(hào)

l        

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

l        

 

1、解析:,N=

.答案:

2、解析:由題意得

答案:

3、解析:程序的運(yùn)行結(jié)果是.答案:

4、解析:與直線垂直的切線的斜率必為4,而,所以,切點(diǎn)為.切線為,即,答案:

5、解析:由一元二次方程有實(shí)根的條件,而,由幾何概率得有實(shí)根的概率為.答案:

6、解析:如果兩條平行直線中的一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面,所以正確;如果兩個(gè)平面與同一條直線垂直,則這兩個(gè)平面平行,所以正確;

如果一個(gè)平面經(jīng)過了另一個(gè)平面的一條垂線,則這兩個(gè)平面平行,所以也正確;

只有選項(xiàng)錯(cuò)誤.答案:

7、解析:由題意,得,答案:

8、解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉淼?sub>.答案:

二、填空題:

l         題號(hào)

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

 

9、解析:若,則,解得

10、解析:由題意

11、解析:

12、解析:令,則,令,則,

,則,令,則,

,則,令,則,

…,所以

13、解析:;則圓心坐標(biāo)為

由點(diǎn)到直線的距離公式得圓心到直線的距離為,所以要求的最短距離為

14、解析:由柯西不等式,答案:

15、解析:顯然為相似三角形,又,所以的面積等于9cm

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16、解: (1),    ……………………… 2分

 ∴,………………………………………………… 4分

 解得.………………………………………………………………… 6分

(2)由,得:,     ……………………… 8分

    ………………………………… 10分

.…………………………………………………………… 12分

17、解:(1)… 2分

的最小正周期,      …………………………………4分

且當(dāng)時(shí)單調(diào)遞增.

的單調(diào)遞增區(qū)間(寫成開區(qū)間不扣分).……6分

(2)當(dāng)時(shí),當(dāng),即時(shí)

所以.      …………………………9分

的對稱軸.      …………………12分

18、解:

(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,

記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分

∵“兩球恰好顏色不同”共種可能,…………………………5分

. ……………………………………………………7分

解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn), …………………………2分

∵每次摸出一球得白球的概率為.………………………………5分

∴“有放回摸兩次,顏色不同”的概率為. …………………7分

(2)設(shè)摸得白球的個(gè)數(shù)為,依題意得:

,

… 10分

,……………………………………12分

.……………………14分

19、(1)證明:  連結(jié),交于點(diǎn),連結(jié).………………………1分

  是菱形, ∴的中點(diǎn). ………………………………………2分

  點(diǎn)的中點(diǎn), ∴.   …………………………………3分

  平面平面, ∴平面.  ……………… 6分

(2)解法一:

 平面,平面,∴ .

,∴.  …………………………… 7分

是菱形,  ∴.

,

平面.  …………………………………………………………8分

,垂足為,連接,則,

所以為二面角的平面角. ………………………………… 10分

,∴,.

在Rt△中,=,…………………………… 12分

.…………………………… 13分

∴二面角的正切值是. ………………………… 14分

解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,……………2分

,

.  ……………4分

設(shè)平面的一個(gè)法向量為,

,得

,則,∴.  …………………7分   

平面,平面,

.  ………………………………… 8分

,∴.

是菱形,∴.

,∴平面.…………………………… 9分

是平面的一個(gè)法向量,.………………… 10分

,

,  …………………… 12分 

.…………………………………… 13分 

∴二面角的正切值是.  ……………………… 14分

20、解:圓的方程為,則其直徑長,圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè)

,   ………………………………2分

.  ……………………4分

…6分

, ………… 7分

因此.    ………………………………… 8分

據(jù)等差,,  …………… 10分

所以,,,…………… 12分

即:方程為.   …………………14分

21、解:

(1)因?yàn)?sub>, …………………………2分 

所以,滿足條件.   …………………3分

又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根

所以函數(shù)是集合M中的元素. …………………………4分

(2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根

同步練習(xí)冊答案