21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題:

1,3,5

二、填空題

13.       14.190     15.②④            16.

三、解答題

17.(1)

                            …………4分

∵A為銳角,∴,∴,

∴當(dāng)時(shí),                           …………6分

   (2)由題意知,∴

又∵,∴,∴,              …………8分

又∵,∴,                                …………9分

由正弦定理         …………12分

18.解:(I)由函數(shù)

                       …………2分

                              …………4分

                                                   …………6分

   (II)由

                            …………8分

,                                             …………10分

                                                  

故要使方程           …………12分

19.(I)連接BD,則AC⊥BD,

∵D1D⊥地面ABCD,∴AC⊥D1D

∴AC⊥平面BB1D1D,

∵D1P平面BB1D1D,∴D1P⊥AC.…………4分

   (II)解:設(shè)連D1O,PO,

∵D1A=D1C,∴D1O⊥AC,同理PO⊥AC,

又∵D1O∩PO=0,

∴AC⊥平面POD1 ………………6分

∵AB=2,∠ABC=60°,

∴AO=CO=1,BO=DO=

∴D1O=

                        …………9分

,                        …………10分

    …………12分

20.解:(I)當(dāng) ;                       …………1分

當(dāng)

                                                            …………4分

驗(yàn)證,

                     …………5分

   (II)該商場(chǎng)預(yù)計(jì)銷售該商品的月利潤(rùn)為

,

                                                            …………7分

(舍去)……9分

綜上5月份的月利潤(rùn)最大是3125元。                           …………12分

21.解:(I)∵|OA1|=|OA2|=|OA3|=2,                             …………1分

∴外接圓C以原點(diǎn)O為圓心,線段OA1為半徑,故其方程為……3分

∴所求橢圓C1的方程是                            …………6分

   (II)直線PQ與圓C相切。

證明:設(shè)

 

 

 

∴直線OQ的方程為                            …………8分

因此,點(diǎn)Q的坐標(biāo)為

                                                            …………10分

綜上,當(dāng)2時(shí),OP⊥PQ,故直線PQ始終與圓C相切。        …………12分

22.解:(I)由題意知:                         …………2分

解得

                                         …………4分

   (II),

當(dāng),                  …………6分

                                    …………8分

故數(shù)列             …………10分

   (III)若

從而

                           …………11分

即數(shù)列                                         …………13分

                             …………14分

 

 


同步練習(xí)冊(cè)答案