題目列表(包括答案和解析)
一、選擇題 1--5 ADACB 6--10 ABACD 11―12 CB
二、填空題 13.8 14.7 15.12 16.AB
三、解答題
17.解:(Ⅰ) ,
,
.…………………………(4分)
, .………………………(6分)
(Ⅱ)由余弦定理,得 .………(8分)
, .
所以的最小值為,當且僅當時取等號.………………(12分)
18.(Ⅰ)解法一:依據(jù)題意,因為隊伍從水路或陸路抵達災區(qū)的概率相等,則將“隊伍從水路或陸路抵達災區(qū)”視為同一個事件. 記“隊伍從水路或陸路抵達災區(qū)”為事件C,且B、C相互獨立,而且.……………………………(2分)
在5月13日恰有1支隊伍抵達災區(qū)的概率是
.……………………(6分)
解法二:在5月13日恰有1支隊伍抵達災區(qū)的概率是
.…………(6分)
(Ⅱ)依據(jù)題意,因為隊伍從水路或陸路抵達災區(qū)的概率相等,則將“隊伍從水路或陸路抵達災區(qū)”視為同一個事件. 記“隊伍從水路或陸路抵達災區(qū)”為事件C,且B、C相互獨立,而且.
設5月13日抵達災區(qū)的隊伍數(shù)為,則=0、1、2、3、4. ……………………(7分)
由已知有:;
;
;
;
.
答:在5月13日抵達災區(qū)的隊伍數(shù)為2時概率最大……………………(12分)
19. (I)由已知a2-a1=-2, a3-a2=-1, -1-(-2)=1
∴an+1-an=(a2-a1)+(n-1)?1=n-3
n≥2時,an=( an-an-1)+( an-1-an-2)+…+( a3-a2)+( a2-a1)+ a1
=(n-4)+(n-5) +…+(-1)+(-2)+6 =
n=1也合適. ∴an= (n∈N*) ……………………3分
又b1-2=4、b2-2=2 .而 ∴bn-2=(b1-2)?()n-1即bn=2+8?()n……(6分)
∴數(shù)列{an}、{bn}的通項公式為:an= ,bn=2+()n-3
(II)設
當k≥4時為k的增函數(shù),-8?()k也為k的增函數(shù),而f(4)=
∴當k≥4時ak-bk≥………………10分
又f(1)=f(2)=f(3)=0 ∴不存在k, 使f(k)∈(0,)…………12分
20解法1:(Ⅰ)因為M是底面BC邊上的中點,且AB=AC,所以AMBC,
在正三棱柱ABC-A1B1C1中,底面, AM 又.所以AM平面.
(或:連結(jié), 又,.)…………(5分)
(II)因為AM平面
且M平面,NM平面
∴AMM, AMNM,
∴MN為二面角―AM―N的平面角. …………(7分)
∴,設C1N=,則CN=1-
又M=,MN=,
連N,得N=,
在MN中,由余弦定理得
, …(10分)
得=.故=2. … (12分)
解法2:(Ⅰ)建立如圖所示的空間直角坐標系,則(0,0,1),M(0,,0),
C(0,1,0), A (),設N (0,1,a) ,所以,
,,
因為所以,同法可得.又故AM面BC.
(II)由(Ⅰ)知??為二面角―AM―N的平面角,以下同法一.
21解(Ⅰ)由已知
∴ ∴………………(2分)
又且 ∴ (舍去)
∴…(4分)
(Ⅱ)令 即的增區(qū)間為、
∵在區(qū)間上是增函數(shù)
∴或 則或……(8分)
(Ⅲ)令或
∵
∴在上的最大值為4,最小值為0………………(10分)
∴、時,……………(12分)
22.解 (1)設為橢圓的左特征點,橢圓的左焦點為,可設直線的方程為.并將它代入得:,即.設,則,……(3分)
∵被軸平分,∴.即.
即,∴.……………(5分)
于是.
∵,即.………………(7分)
(2)對于橢圓.于是猜想:橢圓的“左特征點”是橢圓的左準線與軸的交點. ………………(9分)
證明:設橢圓的左準線與軸相交于M點,過A,B分別作的垂線,垂足分別為C,D.
據(jù)橢圓第二定義:∵
于是即.∴,又均為銳角,∴,∴.
∴的平分線.故M為橢圓的“左特征點”. ………(14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com