由得: 查看更多

 

題目列表(包括答案和解析)

由于當前學生課業(yè)負擔較重,造成青少年視力普遍下降,現(xiàn)從某高中隨機抽取16名學生,經(jīng)校醫(yī)用對數(shù)視力表檢查得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:
精英家教網(wǎng)
(Ⅰ)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)若視力測試結(jié)果不低丁5.0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(Ⅲ)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記ξ表示抽到“好視力”學生的人數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

12、由三角形的性質(zhì)通過類比推理,得到四面體的如下性質(zhì):四面體的六個二面角的平分面交于一點,且這個點是四面體內(nèi)切球的球心,那么原來三角形的性質(zhì)為三角形內(nèi)角平分線交于一點,且這個點是三角形內(nèi)切圓的
圓心

查看答案和解析>>

20、由經(jīng)驗得知,在某商場付款處排隊等候付款的人數(shù)及其概率如下:

則至多2個人排隊的概率為
0.55

查看答案和解析>>

由原點O向三次曲線y=x3-3ax2(a≠0)引切線,切點為P1(x1,y1)(O,P1兩點不重合),再由P1引此曲線的切線,切于點P2(x2,y2)(P1,P2不重合),如此繼續(xù)下去,得到點列:{Pn(xn,yn)}
(1)求x1
(2)求xn與xn+1滿足的關(guān)系式;
(3)若a>0,試判斷xn與a的大小關(guān)系,并說明理由

查看答案和解析>>

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結(jié)論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>


同步練習冊答案