(2)若對(duì)于任意的.都有.求實(shí)數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

若對(duì)于任意x∈R,都有(m-2)x2-2 (m-2)x-4<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個(gè)函數(shù)在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中都有廣泛的應(yīng)用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關(guān)的另一個(gè)函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個(gè)常用函數(shù).
(1)寫(xiě)出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫(xiě)出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個(gè)函數(shù)在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中都有廣泛的應(yīng)用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關(guān)的另一個(gè)函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個(gè)常用函數(shù).
(1)寫(xiě)出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫(xiě)出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個(gè)函數(shù)在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中都有廣泛的應(yīng)用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關(guān)的另一個(gè)函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個(gè)常用函數(shù).
(1)寫(xiě)出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫(xiě)出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個(gè)函數(shù)在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中都有廣泛的應(yīng)用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關(guān)的另一個(gè)函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個(gè)常用函數(shù).
(1)寫(xiě)出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫(xiě)出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其補(bǔ)角就是異面直線與BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即異面直線與BC所成的角的大小為      

 

(3)過(guò)點(diǎn)D作于E,連接CE,由三垂線定理知,故是二面角的平面角,

,∴E為的中點(diǎn),∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小為   

20.解:(1)因,,故可得直線方程為:

(2),,用數(shù)學(xué)歸納法可證.

(3),,

所以

21.解:(1)∵ 函數(shù)是R上的奇函數(shù)    ∴    ∴ ,由的任意性知∵ 函數(shù)處有極值,又

是關(guān)于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知,

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函數(shù)

極大值1

減函數(shù)

極小值

增函數(shù)

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范圍是

22.(1)

(2)由

           ①

設(shè)C,CD中點(diǎn)為M,則有,

,又A(0,-1)且,

,

(此時(shí))      ②

將②代入①得,即,

綜上可得

 

 


同步練習(xí)冊(cè)答案