如圖所示.四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形.∠BCD=60°.E是CD的中點(diǎn).PA⊥底面ABCD.PA=2. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為a的正方形,側(cè)棱PA=a,PB=PD=
2
a,則它的5個(gè)面中,互相垂直的面有
 
對(duì).

查看答案和解析>>

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=2.
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大。

查看答案和解析>>

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內(nèi)接四邊形,其中BD是圓的直徑,∠ABD=60°,∠BDC=45°,PD垂直底面ABCD,PD=2
2
R
,E,F(xiàn)分別是PB,CD上的點(diǎn),且
PE
EB
=
DF
FC
,過(guò)點(diǎn)E作BC的平行線交PC于G.
(1)求BD與平面ABP所成角θ的正弦值;
(2)證明:△EFG是直角三角形;
(3)當(dāng)
PE
EB
=
1
2
時(shí),求△EFG的面積.

查看答案和解析>>

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=
3

(1)證明:平面PBE⊥平面PAB;
(2)求直線PA與平面 BEP所成的角.

查看答案和解析>>

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內(nèi)接四邊形,其中BD是圓的直徑,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求線段PD的長(zhǎng);
(2)若PC=
11
R
,求三棱錐P-ABC的體積.

查看答案和解析>>

一、選擇題:本大題考查基本概念和基本運(yùn)算.每小題5分,滿分60分.

1.B     2.A     3.C     4.B     5.B     6.D7.C 8.A 9.C 10.B

11.C   12.C

二、填空題:13、4    14.  15. 16.

三、解答題:

17. 解:f(x)=a(cosx+1+sinx)+b=         (2分)

(1)當(dāng)a=1時(shí),f(x)= ,

當(dāng)時(shí),f(x)是增函數(shù),所以f(x)的單調(diào)遞增區(qū)間為                          (6分)

(2)由,∴

∴當(dāng)sin(x+)=1時(shí),f(x)取最小值3,即,     

當(dāng)sin(x+)=時(shí),f(x)取最大值4,即b=4.               (10分)

將b=4 代入上式得,故a+b=                 (12分)

 

18.解:設(shè)甲、乙兩條船到達(dá)的時(shí)刻分別為x,y.則

若甲先到,則乙必須晚1小時(shí)以上到達(dá),即

 

若乙先到達(dá),則甲必須晚2小時(shí)以上到達(dá),即

 

作圖,(略).利用面積比可算出概率為.

 

19.解  解法一(Ⅰ)如圖所示,連結(jié)BD,由ABCD是菱形且∠BCD=60°知,△BCD是

等邊三角形.因?yàn)镋是CD的中點(diǎn),所以BE⊥CD,又AB∥CD,所以BE⊥AB.又因?yàn)镻A⊥平面ABCD,平面ABCD,所以PA⊥BE.而AB=A,因此BE⊥平面PAB.

平面PBE,所以平面PBE⊥平面PAB.

(Ⅱ)延長(zhǎng)AD、BE相交于點(diǎn)F,連結(jié)PF.過(guò)點(diǎn)A作AH⊥PB于H,由(Ⅰ)知平面PBE⊥平面PAB,所以AH⊥平面PBE.

在Rt△ABF中,因?yàn)椤螧AF=60°,所以,

AF=2AB=2=AP.

在等腰Rt△PAF中,取PF的中點(diǎn)G,連接AG.

則AG⊥PF.連結(jié)HG,由三垂線定理的逆定理得,

PF⊥HG.

所以∠AGH是平面PAD和平面PBE所成二面角的平面角(銳角).

在等腰Rt△PAF中,

在Rt△PAB中,

所以,在Rt△AHG中,

故平面PAD和平面PBE所成二面角(銳角)的大小是

解法二  如圖所示,以A為原點(diǎn),建立空間直角坐標(biāo)系.則相關(guān)各點(diǎn)的坐標(biāo)分別是A(0,0,0),B(1,0,0),P(0,0,2),

(Ⅰ)因?yàn)?sub>,平面PAB的一個(gè)法向量是,所以共線.從而BE⊥平面PAB.

又因?yàn)?sub>平面PBE,故平面PBE⊥平面PAB.

 

 

   (Ⅱ)易知  

   設(shè)是平面PBE的一個(gè)法向量,則由所以

   設(shè)是平面PAD的一個(gè)法向量,則由所以故可取

   于是,

   故平面PAD和平面PBE所成二面角(銳角)的大小是

20. 解法:

(I)

(Ⅰ)由

整理得

(Ⅱ)由

所以

 

21. 解:設(shè):代入  設(shè)P(),Q

 

整理, 此時(shí),

 

22.本小題主要考查函數(shù)的單調(diào)性、最值、不等式、數(shù)列等基本知識(shí),考查運(yùn)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,考查分析問(wèn)題和解決問(wèn)題的能力,滿分14分.

解法一:

(Ⅰ)因?yàn)?i>,所以函數(shù)定義域?yàn)椋?sub>,+),且

,的單調(diào)遞增區(qū)間為(,0);

x>0,的單調(diào)遞增區(qū)間為(0,+).

(Ⅱ)因?yàn)?i>在[0,n]上是減函數(shù),所以

(?)

,

因此,即實(shí)數(shù)c的取值范圍是

(Ⅱ)由(Ⅰ)知

因?yàn)?sub>

,

所以

解法二:

(Ⅰ)同解法一.

(Ⅱ)因?yàn)閒(x)在上是減函數(shù),所以

   則

(?)因?yàn)?sub>對(duì)恒成立.所以對(duì)恒成立.

  則對(duì)恒成立.

  設(shè),,則c<g(n)對(duì)恒成立.

  考慮

  因?yàn)?sub>,

  所以內(nèi)是減函數(shù);則當(dāng)時(shí),g(n)隨n的增大而減小,

又因?yàn)?sub>=1.

所以對(duì)一切.因此,即實(shí)數(shù)的取值范圍是

(?)由(?)知

     下面用數(shù)學(xué)歸納法證明不等式

     ①當(dāng)n=1時(shí),左邊=,右邊=,左邊<右邊.不等式成立.

     ②假設(shè)當(dāng)n=k時(shí),不等式成立.即

當(dāng)n=k+1時(shí),

時(shí),不等式成立

綜合①,②得,不等式成立.

所以

 

 

 

 

 


同步練習(xí)冊(cè)答案