所以當(dāng)時..又. 查看更多

 

題目列表(包括答案和解析)

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點.

(Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

第二問中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

給出以下五個命題,其中所有正確命題的序號為   
①函數(shù)的最小值為l+2
②已知函數(shù)f (x)=|x2-2|,若f (a)=f (b),且0<a<b,則動點P(a,b)到直線4x+3y-15=0的距離的最小值為1;
③命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2,且|x1|>|x2|時,有f (x1)>f(x2)”是真命題;
④“”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤已知等差數(shù)列{an}的前n項和為Sn,為不共線向量,又,若,則S2012=2013.

查看答案和解析>>

給出以下五個命題,其中所有正確命題的序號為   
①函數(shù)的最小值為l+2
②已知函數(shù)f (x)=|x2-2|,若f (a)=f (b),且0<a<b,則動點P(a,b)到直線4x+3y-15=0的距離的最小值為1;
③命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2,且|x1|>|x2|時,有f (x1)>f(x2)”是真命題;
④“”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤已知等差數(shù)列{an}的前n項和為Sn,為不共線向量,又,若,則S2012=2013.

查看答案和解析>>

給出以下五個命題,其中所有正確命題的序號為________
①函數(shù)數(shù)學(xué)公式的最小值為1+2數(shù)學(xué)公式;
②已知函數(shù)f (x)=|x2-2|,若f (a)=f (b),且0<a<b,則動點P(a,b)到直線4x+3y-15=0的距離的最小值為1;
③命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2數(shù)學(xué)公式,且|x1|>|x2|時,有f (x1)>f(x2)”是真命題;
④“數(shù)學(xué)公式”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤已知等差數(shù)列{an}的前n項和為Sn,數(shù)學(xué)公式為不共線向量,又數(shù)學(xué)公式,若數(shù)學(xué)公式,則S2012=2013.

查看答案和解析>>

因為函數(shù)有0,1,2三個零點,可設(shè)函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因為當(dāng)x>2時f(x)>0所以a>0,因此b<0
若由一個2*2列聯(lián)表中的數(shù)據(jù)計算得k=4.013,那么有________把握認(rèn)為兩個變量有關(guān)系.

查看答案和解析>>


同步練習(xí)冊答案