19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數的圖象經過三點.

(1)求函數的解析式(2)求函數在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數列{an}中, 

   (Ⅰ)求數列{an}的通項公式an

   (Ⅱ)設數列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數,其中a為常數.

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12:BC.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.1或; 14.-4; 15.1; 16.6.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

17.解:(Ⅰ)∵,

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵,

,∴,當且僅當時。ⅲ剑ⅲ??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當且僅當時。ⅲ剑ⅲ

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)設袋中有黑球n個,則每次取出的一個球是黑球的概率為,       3分

設“連續(xù)取兩次,都是黑球”為事件A,∴,????????????????????????????? 5分

,∴.????????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)由(Ⅰ)知,每次取出一個球,取到紅球的概率是.????????????????????????????? 7分

設“連續(xù)取4次球,取到紅球恰為2次”為事件B,“連續(xù)取4次球,取到紅球恰為3次”為事件C,

;??????????????????????????????????????????????????????????????????????????????? 8分

.????????????????????????????????????????????????????????????????????????????????????? 10分

∴取到紅球恰為2次或3次的概率為

故連續(xù)取4次球,取到紅球恰為2次或3次的概率等于.???????????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設O是AA1的中點,連接BO,則BO⊥AA1.???????????????????????????????????????????????????????????????????????????????????????????????? 2分

∵側面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O為原點,建立如圖空間直角坐標系,則,,,.則,,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

是平面ABC的一個法向量,

,則.設A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.∴.?????????????????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ)證明:時,,;????????????????????????????????????????????????? 1分

時,,所以,????????????????????????????????????????? 2分

即數列是以2為首項,公差為2 的等差數列.????????????????????????????????????????????? 3分

,,?????????????????????????????????????????????????????????????????????? 4分

時,,當時,.?????????????????????????????? 5分

????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)當時,,結論成立.??????????????????????????????????????????????? 7分

時,????????????????????? 8分

????????????????????????????????????????????????????????????????????????? 10分

.?????????????????????????????????????????????????????????????????????????????????????? 11分

綜上所述:.?????????????????????????????????????????????????????? 12分

 

21.解:(Ⅰ)∵,∴.比較系數得,,,.???????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 1分

,,?????????????????????????????????????????????????????????????????????? 2分

(Ⅱ)由(Ⅰ)知,

,令,得

x

1

2

+

0

-

0

+

0

-

∴函數有極大值,,極小值.?????????????????? 4分

∵函數在區(qū)間上存在極值,

???????????????????????????????????????????? 5分

解得

故實數.??????????????????????????????????????????????????????????????????? 6分

(Ⅲ)函數的圖象與坐標軸無交點,有如下兩種情況:

(?)當函數的圖象與x軸無交點時,必須有:

???????????????????????????????????????? 7分

,函數的值域為,

解得.??????????????????????????????????????????????????????????????????????? 8分

(?)當函數的圖象與y軸無交點時,必須有:

有意義,???????? 9分

解得.????????????????????????????????????????? 10分

由(?)、(?)知,p的范圍是,

故實數p的取值范圍是.???????????????????????????????????????????????????????????????????????? 12分

22.解:(Ⅰ)設,,,

,,,

.??????????????????????????????????????????????????????????????????????????????? 2分

,∴,∴,∴.??????????????????????????? 4分

則N(c,0),M(0,c),所以,

,則,. ???????????????????????????????????????????????????????????????? 5分

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 7分

消去y得

∵直線l與橢圓交于兩個不同點,設

,

,,?????????????????????????????????????????????????????????????? 8分

,

,???????????????????????????????????????????????????????????????? 9分

,.????????????????????????????????????????????????????????????????????????? 10分

.???????????????????????????????????????? 11分

(或).

,則,,

∴S關于u在區(qū)間單調遞增,又,,?????????????????????????????? 13分

.??????????????????????????????????????????????????????????????????????????????????????????????????? 14分

 

 

 


同步練習冊答案