題目列表(包括答案和解析)
設(shè)函數(shù).
(1)、當(dāng)時(shí),用函數(shù)單調(diào)性定義求
的單調(diào)遞減區(qū)間(6分)
(2)、若連續(xù)擲兩次骰子(骰子六個(gè)面上分別標(biāo)以數(shù)字1,2,3,4,5,6)得到的點(diǎn)數(shù)分別作為和
,求
恒成立的概率; (8分)
設(shè)函數(shù).
(1)、(理)當(dāng)時(shí),用函數(shù)單調(diào)性定義求
的單調(diào)遞減區(qū)間(6分)
(2)、若連續(xù)擲兩次骰子(骰子六個(gè)面上分別標(biāo)以數(shù)字1,2,3,4,5,6)得到的點(diǎn)數(shù)分別作為和
,求
恒成立的概率; (8分)
設(shè)函數(shù).
(1)、(理)當(dāng)時(shí),用函數(shù)單調(diào)性定義求
的單調(diào)遞減區(qū)間(6分)
(2)、若連續(xù)擲兩次骰子(骰子六個(gè)面上分別標(biāo)以數(shù)字1,2,3,4,5,6)得到的點(diǎn)數(shù)分別作為和
,求
恒成立的概率; (8分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線
處的切線方程;
(2)當(dāng)時(shí),求
的極大值和極小值;
(3)若函數(shù)在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)
的斜率值
這樣可以得到切線方程。(2)中,當(dāng)
,再令
,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了
在區(qū)間
導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程。………………4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+
)遞增
∴的極大值為
…………8分
(3)
①若上單調(diào)遞增。∴滿足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)
的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com