題目列表(包括答案和解析)
已知直線l上兩點,P(x1,y1),Q(x2,y2),若x1≠x2,則________為直線l的斜率.當直線與x軸不垂直時,其傾斜角為α,則k=________,直線的斜率k的取值范圍為________;當直線l與x軸垂直時,直線的斜率________.
已知曲線上動點
到定點
與定直線
的距離之比為常數(shù)
.
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點
為圓心作圓
:
,設(shè)圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)
.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當
時,
取得最小值為
.
計算得,,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:
(理)已知數(shù)列{an}的前n項和,且
=1,
.
(I)求數(shù)列{an}的通項公式;
(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有
< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大��;
(III)求證:≤bn<2.
(文)如圖,|AB|=2,O為AB中點,直線
過B且垂直于AB,過A的動直線與
交于點C,點M在線段AC上,滿足=.
(I)求點M的軌跡方程;
(II)若過B點且斜率為- 的直線與軌跡M交于
點P,點Q(t,0)是x軸上任意一點,求當ΔBPQ為
銳角三角形時t的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com