題目列表(包括答案和解析)
π | 2 |
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;
(Ⅲ) 設(shè)bn=(32n-8),求數(shù)列{bn}的前項和Tn
(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標原點到切線的距離為,若x=時,y=f(x)有極值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本題滿分12分) 已知數(shù)列{an}滿足
(Ⅰ)求數(shù)列的前三項:a1,a2,a3;
(Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m
(Ⅲ)求數(shù)列{an}的前n項和Sn.
(本題滿分12分) 已知函數(shù)
(Ⅰ)當(dāng)的 單調(diào)區(qū)間;
(Ⅱ)當(dāng)的取值范圍。一、選擇題
1~4 BBCA 5~8 ADCD
二、填空題
9、 10、 = 11、 12. 42 ;
13. 2或 14. 15.
三、解答題
16(本小題滿分12分)
1)
………………4分
2)當(dāng)單調(diào)遞減,故所求區(qū)間為 ………………8分
(3)時
………………12分
17(本題滿分14分)
解:(Ⅰ)由函數(shù)的圖象關(guān)于原點對稱,得,………1分
∴,∴. ………2分
∴,∴. ……………3分
∴,即. ………………5分
∴. ……………………………6分
(Ⅱ)由(Ⅰ)知,∴.
由 ,∴. …………………8分
0
+
0
ㄋ
極小
ㄊ
極大
ㄋ
∴. …………12分
18
證明:(I)在正中,是的中點,所以.
又,,,所以.
而,所以.所以由,有.
(II)取正的底邊的中點,連接,則.
又,所以.
如圖,以點為坐標原點,為軸,為軸,
建立空間直角坐標系.設(shè),則有,
,,,,,.再設(shè)是面的法向量,則有
,即,可設(shè).
又是面的法向量,因此
,
所以,即平面PAB與平面PDC所成二面角為.
(Ⅲ)由(II)知,設(shè)與面所成角為,則
所以與面所成角的正弦值為.
19(本題滿分14分)
20解:(I)建立圖示的坐標系,設(shè)橢圓方程為依題意,
橢圓方程為………………………………2分
F(-1,0)將x=-1代入橢圓方程得
∴當(dāng)彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),
|