(III)若 查看更多

 

題目列表(包括答案和解析)

(2010•成都模擬)如圖,平面內(nèi)的兩條相交直線l1和l2將平面分割成I、II、III、IV四個(gè)區(qū)域(不包括邊界),向量
OP1
、
OP2
分別為l1和l2的一個(gè)方向向量,若
OP
OP1
OP2
,且點(diǎn)P落在第II區(qū)域,則實(shí)數(shù)λ、μ滿足( 。

查看答案和解析>>

(08年哈六中)橢圓的中心是原點(diǎn)O,它的短軸長(zhǎng)為,相應(yīng)于焦點(diǎn)的準(zhǔn)線軸相交于點(diǎn)A,,過(guò)點(diǎn)A的直線與橢圓相交于P、Q兩點(diǎn)。

   (I) 求橢圓的方程及離心率;

   (II)若求直線PQ的方程;

   (III)設(shè),過(guò)點(diǎn)P且平行于準(zhǔn)線的直線與橢圓相交于另一點(diǎn)M,證明

。

查看答案和解析>>

(04年天津卷理)(14分)

橢圓的中心是原點(diǎn)O,它的短軸長(zhǎng)為,相應(yīng)于焦點(diǎn)的準(zhǔn)線軸相交于點(diǎn)A,,過(guò)點(diǎn)A的直線與橢圓相交于P、Q兩點(diǎn)。

      (I) 求橢圓的方程及離心率;

      (II)若求直線PQ的方程;

      (III)設(shè),過(guò)點(diǎn)P且平行于準(zhǔn)線的直線與橢圓相交于另一點(diǎn)M,證明

。

查看答案和解析>>

(04年全國(guó)卷III文)(12分)

設(shè)橢圓的兩個(gè)焦點(diǎn)是 F1(-c,0), F2(c,0)(c>0),且橢圓上存在點(diǎn)P,使得直線 PF1與直線PF2垂直.

(I)求實(shí)數(shù) m 的取值范圍.

(II)設(shè)l是相應(yīng)于焦點(diǎn) F2的準(zhǔn)線,直線PF2與l相交于點(diǎn)Q. 若,求直線PF2的方程.

查看答案和解析>>

(本小題滿分14分)
已知函數(shù).
(I) 若且函數(shù)為奇函數(shù),求實(shí)數(shù);
(II) 若試判斷函數(shù)的單調(diào)性;
(III) 當(dāng),,時(shí),求函數(shù)的對(duì)稱軸或?qū)ΨQ中心.

查看答案和解析>>

一、選擇題

1~4   BBCA    5~8   ADCD

二、填空題

9、      10、    =      11、        12.   42  ;

13.  2或        14.        15.

三、解答題

16(本小題滿分12分)

1)

    ………………4分

  2)當(dāng)單調(diào)遞減,故所求區(qū)間為      ………………8分

   (3)時(shí)

       ………………12分

17(本題滿分14分)

解:(Ⅰ)由函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,得,………1分

,∴. ………2分

,∴. ……………3分

,即.  ………………5分

. ……………………………6分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………8分

0

+

0

極小

極大

.  …………12分

18

證明:(I)在正中,的中點(diǎn),所以

,,,所以

,所以.所以由,有

 (II)取正的底邊的中點(diǎn),連接,則

,所以

如圖,以點(diǎn)為坐標(biāo)原點(diǎn),軸,軸,

建立空間直角坐標(biāo)系.設(shè),則有,

,,,,.再設(shè)是面的法向量,則有

,即,可設(shè)

是面的法向量,因此

所以,即平面PAB與平面PDC所成二面角為

(Ⅲ)由(II)知,設(shè)與面所成角為,則

所以與面所成角的正弦值為

 

19(本題滿分14分)

20解:(I)建立圖示的坐標(biāo)系,設(shè)橢圓方程為依題意,2a=4,

橢圓方程為………………………………2分

F(-1,0)將x=-1代入橢圓方程得

∴當(dāng)彗星位于太陽(yáng)正上方時(shí),二者在圖中的距離為1.5┩.……………………6分

(Ⅱ)由(I)知,A1(-2,0),A2(2,0),

      <ol id="mvr9a"></ol>
      <acronym id="mvr9a"><pre id="mvr9a"></pre></acronym>
          1. 又點(diǎn)M異于頂點(diǎn)A1,A2,∴-2<x0<2,

            由P、M、A1三點(diǎn)共線可得P

            ………………………8分

            …………………12分

            ∴P、A2、N三點(diǎn)共線,∴直線A2M與NA2不垂直,

            ∴點(diǎn)A2不在以MN為直徑的圓上…………………………14分

             

             

            21.解:(I)  .注意到,即,

            .所以當(dāng)變化時(shí),的變化情況如下表:

            +

            0

            遞增

            極大值

            遞減

            遞減

            極小值

            遞增

             

            所以的一個(gè)極大值,的一個(gè)極大值..

            (II) 點(diǎn)的中點(diǎn)是,所以的圖象的對(duì)稱中心只可能是.

            設(shè)的圖象上一點(diǎn),關(guān)于的對(duì)稱點(diǎn)是..也在的圖象上, 因而的圖象是中心對(duì)稱圖形.

            (III) 假設(shè)存在實(shí)數(shù)、.,.

            , 當(dāng)時(shí), ,而.故此時(shí)的取值范圍是不可能是.

            ,當(dāng)時(shí), ,而.故此時(shí)的取值范圍是不可能是.

            ,由的單調(diào)遞增區(qū)間是,知的兩個(gè)解.而無(wú)解. 故此時(shí)的取值范圍是不可能是.

            綜上所述,假設(shè)錯(cuò)誤,滿足條件的實(shí)數(shù)不存在.

             

             

             

             


            同步練習(xí)冊(cè)答案