9.已知橢圓E的離心率為e.兩焦點為F1.F2,拋物線C以F1為頂點.F2為焦點.P為兩曲線的一個交點.若.則e的值為 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知橢圓E的離心率為e,兩焦點為F1,F(xiàn)2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個公共點,若
|PF1|
|PF2|
=e,則e的值為(  )
A、
3
3
B、
3
2
C、
2
2
D、
6
3

查看答案和解析>>

已知橢圓E的離心率為e,兩焦點為F1、F2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,若
|PF1|
|PF2|
=e,則e的值為
3
3
3
3

查看答案和解析>>

已知橢圓E的離心率為e,兩焦點為F1,F2,拋物線C以F1為頂點,F2為焦點,P為兩曲線的一個交點,若=e,則e的值為_________.

查看答案和解析>>

已知橢圓E的離心率為e,兩焦點為F1、F2,拋物線C以F1為頂點,以F2為焦點,p為兩曲線的一個交點,若=e,則e的值為(    )

A.             B.              C.            D.

查看答案和解析>>

已知橢圓E的離心率為e,兩焦點為F1、F2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,若
|PF1|
|PF2|
=e,則e的值為______.

查看答案和解析>>

一、選擇題

    20080527

    二、填空題  13.4 ;  14.(-∞,-2]∪[1,+∞); 15. 5  ;   16. ② ③

    17.解:(1)由正弦定理得,…

       ,,因此。……6分

    (2)的面積,,

    ,所以由余弦定理得

    !12分

    18.18.解:填湖面積   填湖及排水設備費    水面經(jīng)濟收益   填湖造地后收益

            (畝)      (元)                       

    (1)收益不小于支出的條件可以表示為

    所以,!3分

    顯然時,此時所填面積的最大值為畝!7分

    (2)設該地現(xiàn)在水面m畝,今年填湖造地y畝,

    ,…………9分

    ,所以

    因此今年填湖造地面積最多只能占現(xiàn)有水面的!12分

    19.(1)∵∠DFH就是二面角G-EF-D的平面角…2分

    在Rt△HDF中,DF= PD=1,DH= AD=1   ………4分

    ∴∠DFH=45°,

    即二面角G-EF-D的大小為45°.             …………6分

    (2)當點Q是線段PB的中點時,有PQ⊥平面ADQ.…………7分

    證明如下:
    ∵E是PC中點,∴EQ∥BC,又AD∥BC,故EQ∥AD,從而A、D、E、Q四點共面
    在Rt△PDC中,PD=DC,E為PC中點
    ∴PC⊥DE,又∵PD⊥平面ABCD              …………10分
    ∴AD⊥PC,又AD∩DE=D
    ∴PC⊥平面ADEQ,即PC⊥平面ADQ.          …………12分
    解法二:(1)建立如圖所示空間直角坐標系,設平面GEF的一個法向量為n=(x,y,z),則
      取n=(1,0,1)      …………4分
    又平面EFD的法向量為m=(1,0,0)
    ∴cos<m,n> =                 …………6分
    ∴<m,n>=45°                            …………7分
    (2)設=λ(0<λ<1)
    則=+=(-2+2λ,2λ,2-2λ)       …………9分
    ∵AQ⊥PC ó ?=0  ó  2×2λ-2(2-2λ)=0
    ó  λ=                                                …………11分
    又AD⊥PC,∴PC⊥平面ADQ  ó λ=

    ó  點Q是線段PB的中點.                               …………12分
    20。解: 設,不妨設

    直線的方程:,

    化簡得 .又圓心的距離為1,

     ,           …5分

    易知,上式化簡得,

    同理有.         ………8分

    所以,則

    是拋物線上的點,有,則

    ,.                    ………10分

    所以

    時,上式取等號,此時

    因此的最小值為8.                                    …12分

    21.(Ⅰ)當.

                  …………………3分

    (II)     因為在(0,1]上是增函數(shù),

    所以在(0,1]上恒成立,即在(0,1]上恒成立,

     令,………6分

    在(0,1]上是單調增函數(shù),所以,

    所以.                                          …………………8分

    (Ⅲ)①當時,由(II)知在(0,1]上是增函數(shù),

    所以,解得,與矛盾.…………………10分

    ②當時,令,,

    時,是增函數(shù),

    時,,是減函數(shù).

    所以,即,

    解得,

    綜上,存在,使得當時,f(x)有最大值-6.………………12分

    22.解:(Ⅰ),,

    ,是以為首項,為公比的等比數(shù)列.

    . ………4分

    (Ⅱ)由(Ⅰ)知,

    ,原不等式成立. ………8分

    (Ⅲ)由(Ⅱ)知,對任意的,有

    . ………10分

    , ………12分

    原不等式成立.    ………14分

     


    同步練習冊答案