(Ⅱ)已知不過原點的直線與圓C相切.且在x軸.y軸上的截距相等.求直線的方程. 查看更多

 

題目列表(包括答案和解析)

已知圓C:=0
(1)已知不過原點的直線與圓C相切,且在軸,軸上的截距相等,求直線的方程;
(2)求經(jīng)過原點且被圓C截得的線段長為2的直線方程

查看答案和解析>>

已知圓C=0

1)已知不過原點的直線與圓C相切,且在軸,軸上的截距相等,求直線的方程;

2)求經(jīng)過原點且被圓C截得的線段長為2的直線方程

 

查看答案和解析>>

已知C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,直線l:x-y=0與以原點為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對稱軸.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點F2,直線l1過點F1且垂直于橢圓的長軸,曲線C2上任意一點M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的點,且AB⊥BC,求y0的取值范圍.

查看答案和解析>>

已知點B(0,1),點C(0,-3),直線PB、PC都是圓(x-1)2+y2=1的切線(P點不在y軸上).以原點為頂點,且焦點在x軸上的拋物線C恰好過點P.
(1)求拋物線C的方程;
(2)過點(1,0)作直線l與拋物線C相交于M,N兩點,問是否存在定點R,使
RM
RN
為常數(shù)?若存在,求出點R的坐標及常數(shù);若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的焦點在x軸上,中心在原點,離心率e=
3
3
,直線l:y=x+2與以原點為圓心,橢圓C的短半軸為半徑的圓O相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左、右頂點分別為A1、A2,點M是橢圓上異于A1、A2的任意一點,設(shè)直線MA1、MA2的斜率分別為kMA1、kMA2,證明kMA1kMA2為定值;
(Ⅲ)設(shè)橢圓方程
x2
a2
+
y2
b2
=1
,A1、A2為長軸兩個端點,M為橢圓上異于A1、A2的點,kMA1、kMA2分別為直線MA1、MA2的斜率,利用上面(Ⅱ)的結(jié)論得kMA1kMA2=
 
(只需直接填入結(jié)果即可,不必寫出推理過程).

查看答案和解析>>


同步練習(xí)冊答案