1.已知( ) (A) (B) (C) (D) 查看更多

 

題目列表(包括答案和解析)

 已知=

    (A) (B)   (C) (D)

 

查看答案和解析>>

已知

(A)             (B)        (C)       (D)

查看答案和解析>>

已知

(A)6              (B)5              (C)4              (D)2

 

查看答案和解析>>

(1)如圖(a)(b)(c)(d)為四個(gè)平面圖,數(shù)一數(shù),每個(gè)平面圖各有多少個(gè)頂點(diǎn)?多少條邊?它們將平面圍成了多少個(gè)區(qū)域?

 

頂點(diǎn)數(shù)

邊數(shù)

區(qū)域數(shù)

(a)

 

 

 

(b)

 

 

 

(c)

 

 

 

(d)

 

 

 

 

(2)觀察上表,推斷一個(gè)平面圖形的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間有什么關(guān)系?

(3)現(xiàn)已知某個(gè)平面圖有999個(gè)頂點(diǎn),且圍成了999個(gè)區(qū)域,試根據(jù)以上關(guān)系確定這個(gè)平面圖有多少條邊?

查看答案和解析>>

(A)(不等式選做題)
若關(guān)于x的不等式|a|≥|x+1|+|x-2|存在實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個(gè)三等分點(diǎn),直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點(diǎn)F,則AF的長為
2
3
3
2
3
3

(C)(坐標(biāo)系與參數(shù)方程選做題) 
在已知極坐標(biāo)系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實(shí)數(shù)a=
2或-8
2或-8

查看答案和解析>>

 

一、選擇題 (每題5分,共50分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

小計(jì)

答案

D

D

B

C

C

C

B

C

A

C

 

二、填空題:本大題共4小題,每小題5分,共20.

11. -5  12.7  13.2,1 14.例如:,分段函數(shù)也可(3分);=a/3.(2分)

 

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

15.(12分)

已知:函數(shù)().解不等式:.

解:1)當(dāng)時(shí),即解,(2分)

即,(4分)不等式恒成立,即;(6分)

2)當(dāng)時(shí),即解(8分),即,(10分)因?yàn)椋裕ǎ保狈郑?/p>

由1)、2)得,原不等式解集為.(12分)

16.(本小題滿分12分)

解:1)

              。ǎ卜郑            。ǎ捶郑

(6分)

.(8分)

當(dāng)時(shí)(9分),取最大值.(10分)

2)當(dāng)時(shí),,即,(11分)

解得,.(12分)

17.(本小題滿分14分)

1)證明:連接AC.

∵點(diǎn)A是點(diǎn)P在底面AC上的射影,(1分)

∴PA^面AC.(2分)

PC在面AC上的射影是AC.

正方形ABCD中,BD^AC,(3分)

∴BD^PC.(4分)

2)解:連接OS.

∵BD^AC,BD^PC,

又AC、PC是面PAC上的兩相交直線,

∴BD^面PAC. (6分)

∵OSÌ面PAC,

∴BD^OS.(7分)

正方形ABCD的邊長為a,BD=,(8分)

∴DBSD的面積.(9分)

OS的兩個(gè)端點(diǎn)中,O是定點(diǎn),S是動(dòng)點(diǎn).

∴當(dāng)取得最小值時(shí),OS取得最小值,即OS^PC.(10分)

∵PC^BD, OS、BD是面BSD中兩相交直線,

∴PC^面BSD.(12分)

又PCÌ面PCD,∴面BSD^面PCD.(13分)

∴面BSD與面PCD所成二面角的大小為90°.(14分)

18.(本小題滿分14分)

1)解:設(shè)S(x,y),SA斜率=,SB斜率=,(2分)

由題意,得,(4分)

經(jīng)整理,得.(6分,未指出x的范圍,扣1分)

點(diǎn)S的軌跡C為雙曲線(除去兩頂點(diǎn)).(7分)

2)解:假設(shè)C上存在這樣的兩點(diǎn)P(x1,y1)和Q(x2,y2),則PQ直線斜率為-1,

且P、Q的中點(diǎn)在直線x-y-1=0上.

設(shè)PQ直線方程為:y=-x+b,

由整理得.(9分)

其中時(shí),方程只有一個(gè)解,與假設(shè)不符.

當(dāng)時(shí),D>0,D=

=,

所以,(*)(10分)

又,所以,代入y=-x+b,

得,

因?yàn)椋小中點(diǎn)在直線x-y-1=0上,

所以有:,整理得,(**)(11分)

解(*)和(**),得-1<b<0,0<t<1,(13分)

經(jīng)檢驗(yàn),得:當(dāng)t。ǎ埃保┲腥我庖粋(gè)值時(shí),曲線C上均存在兩點(diǎn)關(guān)于直線x-y-1=0對(duì)稱.(14分)

19.(本小題滿分14分)  

解:甲選手勝乙選手的局?jǐn)?shù)作為隨機(jī)變量ξ,它的取值共有0、1、2、3四個(gè)值.

1)當(dāng)ξ=0時(shí),本場比賽共三局,甲選手連負(fù)三局,

P(ξ=0)=(1-0.6)3=0.064;(2分)

2)當(dāng)ξ=1時(shí),本場比賽共四局,甲選手負(fù)第四局,且前三局中,甲勝一局,

P(ξ=1)=;(4分)

3)當(dāng)ξ=2時(shí),本場比賽共五局,甲選手負(fù)第五局,且前四局中,甲勝二局,

P(ξ=2)=; (6分)

4)當(dāng)ξ=3時(shí),本場比賽共三局、或四局、或五局.其中共賽三局時(shí),甲連勝這三局;共賽四局時(shí),第四局甲勝,且前三局中甲勝兩局;共賽五局時(shí),第五局甲勝,且前四局中甲勝兩局;

P(ξ=3)==0.68256(8分)

ξ的概率分布列為:

ξ

0

1

2

3

P

0.064

0.1152

0.13824

0.68256

(10分)

Eξ=0´P(ξ=0)+ 1´ P(ξ=1)+2´ P(ξ=2)+3´ P(ξ=3)    (12分)

=0´0.064+1´0.1152+2´0.13824+3´0.68256=2.43926»2.4394.(14分)

 

20.(本小題滿分14分)

解:(1)由題意知,(1分)

得,(3分)∴ (5分)                       

(2)(6分)

     (8分)                  

(3)設(shè)存在S,P,r,(9分)

          (10分)                        

即 

 (*)   (12分)        

因?yàn)閟、p、r為偶數(shù)

1+2,(*)式產(chǎn)生矛盾.所以這樣的三項(xiàng)不存在.(14分)

       以上答案及評(píng)分標(biāo)準(zhǔn)僅供參考,如有其它解法請(qǐng)參照給分.

 


同步練習(xí)冊(cè)答案