是△ABC所在平面內(nèi)一點,且滿足,則△ABC一定是 A.等邊三角形 B.斜三角形 C.等腰直角三角形 D.直角三角形 查看更多

 

題目列表(包括答案和解析)

O是△ABC所在平面內(nèi)一點,且滿足|-|=|+-2|,則△ABC的形狀為

A.等腰直角三角形                           B.直角三角形

C.斜三角形                                 D.等邊三角形

查看答案和解析>>

O是△ABC所在平面內(nèi)一點,且滿足|-|=|+-2|,則△ABC的形狀為

A.等腰直角三角形                              B.直角三角形

C.斜三角形                                    D.等邊三角形

查看答案和解析>>

O為△ABC所在平面內(nèi)一點,且滿足(,則△ABC的形狀為(  )

A.正三角形                                                     B.直角三角形

C.等腰三角形                                                  D.AB、C均不是

查看答案和解析>>

P是△ABC所在平面內(nèi)一點,且滿足,已知△ABC的面積是1,則△PAB的面積是             。

 

查看答案和解析>>

P是△ABC所在平面內(nèi)一點,且滿足,已知△ABC的面積是1,則△PAB的面積是            

 

查看答案和解析>>

1.C  2.D  3.A  4.A  5.C  6.D  7.D  8.A 9.C10.D   11.B12.D

13.

14.

15.

16.  

17

18.解:

 ⑴ .

⑵ 函數(shù)上單調(diào)遞增,

上單調(diào)遞減.

所以,當(dāng)時,;當(dāng)時,.

的值域為.

19.解:由題意可知圓的方程為,于是.

時,設(shè),,則由得,

,. 所以的中點坐標(biāo)為.

又由,且,可知直線與直線垂直,即直線的斜率為.

此時直線的方程為,即.

時,同理可得直線的方程為.

故直線的方程為.

20. 解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因為點均在函數(shù)的圖像上,所以=3n2-2n.

當(dāng)n≥2時,an=Sn-Sn-1=(3n2-2n)-

=6n-5.

當(dāng)n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

(Ⅱ)由(Ⅰ)

得知,

故Tn

(1-

因此,要使(1-)<)成立的m,必須且僅須滿足,即m≥10,所以滿足要求的最小正整數(shù)m為10.

21.解:⑴設(shè),∵不等式的解集為

……… ①       ……… ②

又∵有兩等根,

……… ③     由①②③解得   …………(5分)

又∵,

,故.

  …………………………(7分)

⑵由①②得,

……………………(9分)

無極值,∴方程

       ,

解得  …………(12分)

22.(1);

   (2)

   (3)

 

 

 


同步練習(xí)冊答案