已知如圖.的外接圓的圓心為,, 查看更多

 

題目列表(包括答案和解析)

 已知如圖,的外接圓的圓心為,,

   則等于             .     

 

 

查看答案和解析>>

已知如圖,△ABC的外接圓的圓心為O,AB=2,AC=3,BC=,則等于

[  ]

A.

B.

C.2

D.3

查看答案和解析>>

如圖,在平面直角坐標(biāo)系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點(diǎn)P、Q.

(1)當(dāng)t=3時(shí),求以F1,F(xiàn)2為焦點(diǎn),且過(guò)PQ中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)Q作直線QR∥AF1交F1F2于點(diǎn)R,記△PRF1的外接圓為圓C.

①求證:圓心C在定直線7x+4y+8=0上;

②圓C是否恒過(guò)異于點(diǎn)F1的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,其右準(zhǔn)線l與x軸的交點(diǎn)為T,過(guò)橢圓的上頂點(diǎn)A作橢圓的右準(zhǔn)線l的垂線,垂足為D,四邊形AF1F2D為平行四邊形.
(1)求橢圓的離心率;
(2)設(shè)線段F2D與橢圓交于點(diǎn)M,是否存在實(shí)數(shù)λ,使?若存在,求出實(shí)數(shù)λ的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若B是直線l上一動(dòng)點(diǎn),且△AF2B外接圓面積的最小值是4π,求橢圓方程.

查看答案和解析>>

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,其右準(zhǔn)線l與x軸的交點(diǎn)為T,過(guò)橢圓的上頂點(diǎn)A作橢圓的右準(zhǔn)線l的垂線,垂足為D,四邊形AF1F2D為平行四邊形.
(1)求橢圓的離心率;
(2)設(shè)線段F2D與橢圓交于點(diǎn)M,是否存在實(shí)數(shù)λ,使
TA
TM
?若存在,求出實(shí)數(shù)λ的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若B是直線l上一動(dòng)點(diǎn),且△AF2B外接圓面積的最小值是4π,求橢圓方程.

查看答案和解析>>

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

A

D

B

C

C

A

B

C

B

A

13.     14. 2   15.    16. ① ④

17.1) ……2分

     

當(dāng)                         ……4分 

,對(duì)稱中心           ……6分

(2)                         ……8分

                                 ……10分

                   ……12分

18. 解:1)                     ……5分

(2)分布列:

0

1

2

3

4

,

,

評(píng)分:下面5個(gè)式子各1分,列表和期望計(jì)算2分(5+2=7分)

 

19. 解:(1)

   

    所以

   (2)設(shè)    ……8分

    當(dāng)  

      

    當(dāng)     

    所以,當(dāng)

的最小值為……………………………… 12分

 

20.解法1:

(1)過(guò)S作,,連

  

        ……4分

(2),,∴是平行四邊形

故平面

過(guò)A作,,連

為平面

二面角平面角,而

應(yīng)用等面積:,

故題中二面角為                         ……4分

(3)∵,距離為距離

又∵,∴平面,∴平面

∴平面平面,只需B作SE連線BO1,BO1

設(shè)線面角為,,

,故線面角為          ……4分

解法2:

(1)同上

(2)建立直角坐標(biāo)系

平面SDC法向量為

,,

設(shè)平面SAD法向量

,取,

  ∴ 

∴二面角為

(3)設(shè)線面角為,

 

21.(1)

時(shí),        

                   

……                                 

             

     

                        

          

(3分)

時(shí),

 

……

  (5分)

(6分)

(2)

又∵,∴

(12分)

 

22.(1)設(shè),,

,∴  (3分)

所以P點(diǎn)的軌跡是以為焦點(diǎn),實(shí)半軸長(zhǎng)為1的雙曲線的右支(除頂點(diǎn))。(4分)

(2)設(shè)PE斜率為,PR斜率為

PE:    PR:

,

  …………(6分)

由PF和園相切得:,PR和園相切得:

故:兩解

故有:

,  ……(8分)

又∵,∴,∴  (11分)

設(shè),

,,

   (14分)

 

 


同步練習(xí)冊(cè)答案