在正整數(shù)數(shù)列中.由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1.再染2個偶數(shù)2.4,再染4后面最鄰近的3個連續(xù)奇數(shù)5.7.9,再染9后面最鄰近的4個連續(xù)偶數(shù)10.12.14.16,再染此后最鄰近的5個連續(xù)奇數(shù)17.19.21.23.25.按此規(guī)則一直染下去.得到一紅色子數(shù)列1.2.4.5.7.9.10.12.14.16.17.-.則在這個紅色子數(shù)列中.由1開始的第2009個數(shù)是 查看更多

 

題目列表(包括答案和解析)

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1,再染2個偶數(shù)2、4;再染4后面最鄰近的3個連續(xù)奇數(shù)5、7、9;再染9后面最鄰近的4個連續(xù)偶數(shù)10、12、14、16;再染16后面最鄰近的5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直染下去,得到一紅色子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個紅色子數(shù)列中,由1開始的第2009個數(shù)是( 。
A、3948B、3953C、3955D、3958

查看答案和解析>>

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項:第一次取1,第二次取2個連續(xù)偶數(shù)2、4;第三次取3個連續(xù)奇數(shù)5、7、9;第四次取4個連續(xù)偶數(shù)10、12、14、16;第五次取5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直取下去,得到一個子數(shù)列1,2,4,5,7,9,12,14,16,17,….則在這個子數(shù)列中,由1開始的第2008個數(shù)是
3953
3953

查看答案和解析>>

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項:第一次取1,第二次取2個連續(xù)偶數(shù)2、4;第三次取3個連續(xù)奇數(shù)5、7、9;第四次取4個連續(xù)偶數(shù)10、12、14、16;第五次取5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直取下去,得到一個子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個子數(shù)列中,由1開始的第15個數(shù)是       ,第2014個數(shù)是__________.

查看答案和解析>>

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項:第一次取1,第二次取2個連續(xù)偶數(shù)2、4;第三次取3個連續(xù)奇數(shù)5、7、9;第四次取4個連續(xù)偶數(shù)1012、1416;第五次取5個連續(xù)奇數(shù)17、19、2123、25.按此規(guī)則一直取下去,得到一個子數(shù)列1,2,45,79,10,12,14,1617,.則在這個子數(shù)列中,由1開始的第15個數(shù)是 ,第2014個數(shù)是__________.

 

查看答案和解析>>

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1,再染2個偶數(shù)2、4;再染4后面最鄰近的3個連續(xù)奇數(shù)5、7、9;再染9后面最鄰近的4個連續(xù)偶數(shù)10、12、14、16;再染16后面最鄰近的5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直染下去,得到一紅色子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個紅色子數(shù)列中,由1開始的第2009個數(shù)是( )
A.3948
B.3953
C.3955
D.3958

查看答案和解析>>

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

A

D

B

C

C

A

B

C

B

A

13.     14. 2   15.    16. ①、

17.1) ……2分

     

當(dāng)                         ……4分 

,對稱中心           ……6分

(2)                         ……8分

                                 ……10分

,                   ……12分

18. 解:1)                     ……5分

(2)分布列:

0

1

2

3

4

,

評分:下面5個式子各1分,列表和期望計算2分(5+2=7分)

 

19. 解:(1)

   

    所以

   (2)設(shè)    ……8分

    當(dāng)  

      

    當(dāng)     

    所以,當(dāng)

的最小值為……………………………… 12分

 

20.解法1:

(1)過S作,連

  

        ……4分

(2),∴是平行四邊形

故平面

過A作,連

為平面

二面角平面角,而

應(yīng)用等面積:,

故題中二面角為                         ……4分

(3)∵,距離為距離

又∵,,∴平面,∴平面

∴平面平面,只需B作SE連線BO1,BO1

設(shè)線面角為,,

,故線面角為          ……4分

解法2:

(1)同上

(2)建立直角坐標(biāo)系

平面SDC法向量為

,,

設(shè)平面SAD法向量

,取

  ∴ 

∴二面角為

(3)設(shè)線面角為

 

21.(1)

時,        

                   

……                                 

             

     

                        

          

(3分)

時,

 

……

  (5分)

(6分)

(2)

又∵,∴

(12分)

 

22.(1)設(shè),,

,∴  (3分)

所以P點的軌跡是以為焦點,實半軸長為1的雙曲線的右支(除頂點)。(4分)

(2)設(shè)PE斜率為,PR斜率為

PE:    PR:

,,

  …………(6分)

由PF和園相切得:,PR和園相切得:

故:兩解

故有:

  ……(8分)

又∵,∴,∴  (11分)

設(shè),

,

   (14分)

 

 


同步練習(xí)冊答案