(2)表示選擇數(shù)學(xué)奧賽輔導(dǎo)班的人數(shù).寫出分布列和數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

若矩陣A=
726967656259
817468645952
857976726964
228219211204195183
是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上( 。

查看答案和解析>>

某校從參加市聯(lián)考的甲、乙兩班數(shù)學(xué)成績110分以上的同學(xué)中各隨機(jī)抽取8人,將這16人的數(shù)學(xué)成績編成如下莖葉圖.
(Ⅰ)莖葉圖中有一個(gè)數(shù)據(jù)污損不清(用△表示),若甲班抽出來的同學(xué)平均成績?yōu)?22分,試推算這個(gè)污損的數(shù)據(jù)是多少?
(Ⅱ)現(xiàn)要從成績在130分以上的5位同學(xué)中選2位作數(shù)學(xué)學(xué)習(xí)方法介紹,請將所有可能的結(jié)果列舉出來,并求選出的兩位同學(xué)不在同一個(gè)班的概率.

查看答案和解析>>

研究表明:學(xué)生的接受能力依賴于老師持續(xù)講課所用的時(shí)間.上課開始時(shí),學(xué)生興趣高,接受能力遞增,中間有一段時(shí)間學(xué)生的興趣不變,接受能力穩(wěn)定在某個(gè)狀態(tài),隨后學(xué)生的注意力開始分散,接受能力下降.分析結(jié)果和實(shí)驗(yàn)表明:用f(x)表示學(xué)生的接受能力,x表示老師講課所用的時(shí)間(單位:分),可有以下的關(guān)系式:f(x)=
-0.1x2+2.6x+43,(0<x≤10)
59,(10<x≤16)
-3x+107,(16<x≤30).

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(2)一個(gè)數(shù)學(xué)難題,需要不低于55的接受能力,上課開始30分鐘內(nèi),問能達(dá)到該接受能力所要求的時(shí)間共有多少分鐘?

查看答案和解析>>

如圖所示,直立在地面上的兩根鋼管AB和CD,兩根鋼管相距1m,AB=10
3
m
,CD=3
3
m
,現(xiàn)用鋼絲繩對這兩根鋼管進(jìn)行加固,在AB上取一點(diǎn)E,以C為支點(diǎn)將鋼絲繩拉直并固定在地面的F處,形成一個(gè)直線型的加固.設(shè)BE=x(m),∠EFD=θ(rad),EF=l(m).
(1)試將l(m)分別表示成x(m),θ(rad)的函數(shù);
(2)選擇其中一個(gè)函數(shù)模型求l(m)的最小值,并求相應(yīng)的x(或θ)的值.

查看答案和解析>>

某校從4名男教師和2名女教師中任選3人參加全縣教育系統(tǒng)舉行的“我的教育故事”演講比賽.如果設(shè)隨機(jī)變量ξ表示所選3人中女教師的人數(shù).
求:
(1)ξ的分布列;
(2)ξ的數(shù)學(xué)期望;
(3)“所選3人中女教師的人數(shù)ξ≥1”的概率.

查看答案和解析>>

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

A

D

B

C

C

A

B

C

B

A

13.     14. 2   15.    16. ① ④

17.1) ……2分

     

當(dāng)                         ……4分 

,對稱中心           ……6分

(2)                         ……8分

                                 ……10分

,                   ……12分

18. 解:1)                     ……5分

(2)分布列:

0

1

2

3

4

,

,

評分:下面5個(gè)式子各1分,列表和期望計(jì)算2分(5+2=7分)

 

19. 解:(1)

   

    所以

   (2)設(shè)    ……8分

    當(dāng)  

      

    當(dāng)     

    所以,當(dāng)

的最小值為……………………………… 12分

 

20.解法1:

(1)過S作,連

  

        ……4分

(2),,∴是平行四邊形

故平面

過A作,,連

為平面

二面角平面角,而

應(yīng)用等面積:,

,

故題中二面角為                         ……4分

(3)∵,距離為距離

又∵,,∴平面,∴平面

∴平面平面,只需B作SE連線BO1,BO1

設(shè)線面角為,,

,故線面角為          ……4分

解法2:

(1)同上

(2)建立直角坐標(biāo)系

平面SDC法向量為,

,

設(shè)平面SAD法向量

,取,,

  ∴ 

∴二面角為

(3)設(shè)線面角為,

 

21.(1)

時(shí),        

                   

……                                 

             

     

                        

          

(3分)

時(shí),

 

……

  (5分)

(6分)

(2)

又∵,∴

(12分)

 

22.(1)設(shè),

,∴  (3分)

所以P點(diǎn)的軌跡是以為焦點(diǎn),實(shí)半軸長為1的雙曲線的右支(除頂點(diǎn))。(4分)

(2)設(shè)PE斜率為,PR斜率為

PE:    PR:

,

  …………(6分)

由PF和園相切得:,PR和園相切得:

故:兩解

故有:

,  ……(8分)

又∵,∴,∴  (11分)

設(shè),

,

   (14分)

 

 


同步練習(xí)冊答案