題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)
如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,平面AA1C1C⊥平面ABC D.
(1)證明:BD⊥AA1;
(2)證明:平面AB1C//平面DA1C1
(3)在直線(xiàn)CC1上是否存在點(diǎn)P,使BP//平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由.
(本小題滿(mǎn)分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,
E是CD的中點(diǎn),PA⊥底面ABCD,PA=2.
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.
(本小題滿(mǎn)分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,BCD=60,E是CD的中點(diǎn),PA底面ABCD,PA=2.
(1)證明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。
(本小題滿(mǎn)分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,BCD=60,E是CD的中點(diǎn),PA底面ABCD,PA=2.
(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。
(本小題滿(mǎn)分12分)如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC, PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
A
D
B
C
C
A
B
C
B
A
13. 14. 2 15. 16. ① ④
17.1) ……2分
當(dāng) ∴ ……4分
,對(duì)稱(chēng)中心 ……6分
(2) ……8分
……10分
, ……12分
18. 解:1) ……5分
(2)分布列:
0
1
2
3
4
,,
,
評(píng)分:下面5個(gè)式子各1分,列表和期望計(jì)算2分(5+2=7分)
19. 解:(1)
所以
(2)設(shè) ……8分
當(dāng)
當(dāng)
所以,當(dāng)
的最小值為……………………………… 12分
20.解法1:
(1)過(guò)S作,,連
∴
∴ ……4分
(2),,∴是平行四邊形
故平面
過(guò)A作,,連
∴為平面和
二面角平面角,而
應(yīng)用等面積:,
∵,
故題中二面角為 ……4分
(3)∵∥,到距離為到距離
又∵,,∴平面,∴平面
∴平面平面,只需B作SE連線(xiàn)BO1,BO1=
設(shè)線(xiàn)面角為,,,
∴,故線(xiàn)面角為 ……4分
解法2:
(1)同上
(2)建立直角坐標(biāo)系
平面SDC法向量為,
,,
設(shè)平面SAD法向量
,取,,
∴ ∴
∴二面角為
(3)設(shè)線(xiàn)面角為,
∴
21.(1)
時(shí),
……
∴
∴
∴ (3分)
時(shí),
……
∴ (5分)
故(6分)
(2)
又∵,∴
∴(12分)
22.(1)設(shè),,
∵
∴,∴ (3分)
所以P點(diǎn)的軌跡是以為焦點(diǎn),實(shí)半軸長(zhǎng)為1的雙曲線(xiàn)的右支(除頂點(diǎn))。(4分)
(2)設(shè)PE斜率為,PR斜率為
PE: PR:
令,,
∴ …………(6分)
由PF和園相切得:,PR和園相切得:
故:為兩解
故有:
, ……(8分)
又∵,∴,∴ (11分)
設(shè),
故,,
∴ (14分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com