4.兩個正數(shù)a.b的等差中項是.一個等比中項是的離心率e等于 查看更多

 

題目列表(包括答案和解析)

兩個正數(shù)a、b的等差中項是,一個等比中項是,且則雙曲線的離心率為

       A.                        B.                        C.                         D.

 

查看答案和解析>>

兩個正數(shù)a、b的等差中項是,一個等比中項是,且則雙曲線的離心率為

    A.   B.    C.   D.

查看答案和解析>>

兩個正數(shù)ab的等差中項是,一個等比中項是,且則雙曲線的離心率為

    A.   B.    C.   D.

查看答案和解析>>

兩個正數(shù)a、b的等差中項是,一個等比中項是,且則雙曲線的離心率為(     )

A.    B.    C.     D.

查看答案和解析>>

兩個正數(shù)a 、b的等差中項是,一個等比中項是,且則橢圓 的離心率e等于(    )

A. B.  C. D.

 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DABD    BCCA

二、填空題:本大題共4小題,每小題4分,共16分。

13.    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

  • 19.(I)解:取CE中點P,連結FP、BP,

    ∵F為CD的中點,

    ∴FP//DE,且FP=

    又AB//DE,且AB=

    ∴AB//FP,且AB=FP,

    ∴ABPF為平行四邊形,∴AF//BP!2分

    又∵AF平面BCE,BP平面BCE,

    ∴AF//平面BCE。 …………4分

       (II)∵△ACD為正三角形,∴AF⊥CD。

    ∵AB⊥平面ACD,DE//AB,

    ∴DE⊥平面ACD,又AF平面ACD,

    ∴DE⊥AF。又AF⊥CD,CD∩DE=D,

    ∴AF⊥平面CDE。 …………6分

    又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

    ∴平面BCE⊥平面CDE。 …………8分

       (III)由(II),以F為坐標原點,F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標系F―xyz.設AC=2,

    則C(0,―1,0),………………9分

     ……10分

    顯然,為平面ACD的法向量。

    設平面BCE與平面ACD所成銳二面角為

    ,即平面BCE與平面ACD所成銳二面角為45°!12分

    20.(I)證明:當,

    , …………3分

    , …………5分

    所以,的等比數(shù)列。 …………6分

       (II)解:由(I)知, …………7分

    可見,若存在滿足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

    21.解:(I)解:由

    知點C的軌跡是過M,N兩點的直線,故點C的軌跡方程是:

       (II)解:假設存在于D、E兩點,并以線段DE為直徑的圓都過原點。設

        由題意,直線l的斜率不為零,

        所以,可設直線l的方程為

        代入 …………7分

       

        此時,以DE為直徑的圓都過原點。 …………10分

        設弦DE的中點為

       

    22.解:(I)函數(shù)

         …………1分

         …………2分

        當

        列表如下:

    +

    0

    極大值

        綜上所述,當

        當 …………5分

       (II)若函數(shù)

        當,

        當,故不成立。 …………7分

        當由(I)知,且是極大值,同時也是最大值。

        從而

        故函數(shù) …………10分

       (III)由(II)知,當

       

     

     

     


    同步練習冊答案