(II)在△ABC.若的值. 查看更多

 

題目列表(包括答案和解析)

 

在△ABC,角A,B,C所對(duì)邊分別a、b、c,且。

(I)求角A

(II)若,,試求的最小值

 

 

 

 

 

 

 

查看答案和解析>>

(滿(mǎn)分15分)在△ABC中,A,B,C分別是邊所對(duì)應(yīng)的角,且
(I)求的值;
(II)若,求△ABC的面積的最大值。

查看答案和解析>>

(滿(mǎn)分15分)在△ABC中,A,B,C分別是邊所對(duì)應(yīng)的角,且

(I)求的值;

(II)若,求△ABC的面積的最大值。

 

查看答案和解析>>

(滿(mǎn)分15分)在△ABC中,A,B,C分別是邊所對(duì)應(yīng)的角,且

(I)求的值;

(II)若,求△ABC的面積的最大值。

查看答案和解析>>

(滿(mǎn)分15分)在△ABC中,A,B,C分別是邊所對(duì)應(yīng)的角,且
(I)求的值;
(II)若,求△ABC的面積的最大值。

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DABD    BCCA

二、填空題:本大題共4小題,每小題4分,共16分。

13.    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤(rùn)的萬(wàn)元;

    本年度每輛車(chē)的投入成本為萬(wàn)元;

    本年度每輛車(chē)的出廠(chǎng)價(jià)為萬(wàn)元;

    本年度年銷(xiāo)售量為 ………………2分

    因此本年度的利潤(rùn)為

   

   (II)本年度的利潤(rùn)為

   

………………7分

(舍去)。  …………9分

        19.(I)解:取CE中點(diǎn)P,連結(jié)FP、BP,

        ∵F為CD的中點(diǎn),

        ∴FP//DE,且FP=

        又AB//DE,且AB=

        ∴AB//FP,且AB=FP,

        ∴ABPF為平行四邊形,∴AF//BP!2分

        又∵AF平面BCE,BP平面BCE,

        ∴AF//平面BCE。 …………4分

           (II)∵△ACD為正三角形,∴AF⊥CD。

        ∵AB⊥平面ACD,DE//AB,

        ∴DE⊥平面ACD,又AF平面ACD,

        ∴DE⊥AF。又AF⊥CD,CD∩DE=D,

        ∴AF⊥平面CDE。 …………6分

        又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

        ∴平面BCE⊥平面CDE。 …………8分

           (III)由(II),以F為坐標(biāo)原點(diǎn),F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線(xiàn)分別為x,y,z軸(如圖),建立空間直角坐標(biāo)系F―xyz.設(shè)AC=2,

        則C(0,―1,0),………………9分

         ……10分

        顯然,為平面ACD的法向量。

        設(shè)平面BCE與平面ACD所成銳二面角為

        ,即平面BCE與平面ACD所成銳二面角為45°!12分

        20.(I)證明:當(dāng)

        , …………3分

        , …………5分

        所以,的等比數(shù)列。 …………6分

           (II)解:由(I)知, …………7分

        可見(jiàn),若存在滿(mǎn)足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

        21.解:(I)解:由

        知點(diǎn)C的軌跡是過(guò)M,N兩點(diǎn)的直線(xiàn),故點(diǎn)C的軌跡方程是:

           (II)解:假設(shè)存在于D、E兩點(diǎn),并以線(xiàn)段DE為直徑的圓都過(guò)原點(diǎn)。設(shè)

            由題意,直線(xiàn)l的斜率不為零,

            所以,可設(shè)直線(xiàn)l的方程為

            代入 …………7分

           

            此時(shí),以DE為直徑的圓都過(guò)原點(diǎn)。 …………10分

            設(shè)弦DE的中點(diǎn)為

           

        22.解:(I)函數(shù)

             …………1分

             …………2分

            當(dāng)

            列表如下:

        +

        0

        極大值

            綜上所述,當(dāng)

            當(dāng) …………5分

           (II)若函數(shù)

            當(dāng),

            當(dāng),故不成立。 …………7分

            當(dāng)由(I)知,且是極大值,同時(shí)也是最大值。

            從而

            故函數(shù) …………10分

           (III)由(II)知,當(dāng)

           

         

         

         


        同步練習(xí)冊(cè)答案