A.M=N B.MN C.MN D.M∩N= 查看更多

 

題目列表(包括答案和解析)

集合

[  ]

A.M=N
B.MN
C.MN
D.M∩N=

查看答案和解析>>

集合

[  ]

A.M=N
B.MN
C.MN
D.M∩N=

查看答案和解析>>

設(shè)集合,則
[     ]
A.M=N
B.MN
C.MN
D.MN

查看答案和解析>>

 

A.(幾何證明選講選做題)

如圖,已知AB為圓O的直徑,BC切圓O于點(diǎn)B,AC交圓O于點(diǎn)PE為線段BC的中點(diǎn).求證:OPPE

B.(矩陣與變換選做題)

已知M,N,設(shè)曲線y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求F的方程.

C.(坐標(biāo)系與參數(shù)方程選做題)

在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長(zhǎng).

D.(不等式選做題)

設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

 

查看答案和解析>>

設(shè)集合M =,N =,則 (   )

A.M=N             B.MN            C.MN            D.MN=

 

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

      20080522

       

      二、填空題:

      13.13   14.   15.       16.②③

      三、解答題:

       17.解:(1) f()=sin(2-)+1-cos2(-)

                = 2[sin2(-)- cos2(-)]+1

               =2sin[2(-)-]+1

               = 2sin(2x-) +1  …………………………………………5分

      ∴ T==π…………………………………………7分

        (2)當(dāng)f(x)取最大值時(shí), sin(2x-)=1,有  2x- =2kπ+ ……………10分

      =kπ+    (kZ) …………………………………………11分

      ∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

       

      18.解:(1) :當(dāng)時(shí),,…………………………………………1分

      當(dāng)時(shí),.

      ……………………………………………………………………………………3分

      是等差數(shù)列,

      ??????????…………………………………………5?分

       (2)解:, .…………………………………………7分

      ,, ……………………………………8分

      ??????????…………………………………………??9分

      .

      ,,即是等比數(shù)列. ………………………11分

      所以數(shù)列的前項(xiàng)和.………………………12分

      19.解(1)∵函數(shù)的圖象的對(duì)稱(chēng)軸為

      要使在區(qū)間上為增函數(shù),

      當(dāng)且僅當(dāng)>0且……………………2分

      =1則=-1,

      =2則=-1,1

      =3則=-1,1,;………………4分

      ∴事件包含基本事件的個(gè)數(shù)是1+2+2=5

      ∴所求事件的概率為………………6分

      (2)由(1)知當(dāng)且僅當(dāng)>0時(shí),

      函數(shù)上為增函數(shù),

      依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?sub>

      構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠帧!?分

      ………………10分

      ∴所求事件的概率為………………12分

      20解:(1):作,連

      的中點(diǎn),連、,

      則有……………………………4分

      …………………………6分

      (2)設(shè)為所求的點(diǎn),作,連.則………7分

      就是與面所成的角,則.……8分

      設(shè),易得

      ……………………………………10分

      解得………11分

      故線段上存在點(diǎn),且時(shí),與面角. …………12分

       

      21.解(1)由

          

      過(guò)點(diǎn)(2,)的直線方程為,即

         (2)由

      在其定義域(0,+)上單調(diào)遞增。

      只需恒成立

      ①由上恒成立

      ,∴,∴,∴…………………………10分

      綜上k的取值范圍為………………12分

      22.解:(1)由題意橢圓的離心率

      ∴橢圓方程為………………3分

      又點(diǎn)(1,)在橢圓上,∴=1

      ∴橢圓的方程為………………6分

         (2)若直線斜率不存在,顯然不合題意;

      則直線l的斜率存在!7分

      設(shè)直線,直線l和橢交于,

      依題意:………………………………9分

      由韋達(dá)定理可知:………………10分

      從而………………13分

      求得符合

      故所求直線MN的方程為:………………14分

       

       

       

       


      同步練習(xí)冊(cè)答案