取得最大值的的集合. 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的一段圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間,并指出f(x)的最大值及取到最大值時(shí)x的集合;
(3)把f(x)的圖象向左至少平移多少個(gè)單位,才能使得到的圖象對(duì)應(yīng)的函數(shù)為偶函數(shù)?

查看答案和解析>>

設(shè)函數(shù)f(x)=
3
3
2
sinωx+
3
2
cosωx (ω>0),x∈R
,且以
π
2
為最小正周期.
(Ⅰ)求f(x)的最大值,并求能使f(x)取得最大值時(shí)的x的集合.
(Ⅱ)已知f(
α
4
π
12
)=
9
5
,求sinα的值.

查看答案和解析>>

已知函數(shù)f(x)=sin(2x-
π6
)
+2cos2x.
(1)求f(x)的最大值以及使f(x)取得最大值的x的集合;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

已知函數(shù)f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
)
(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求使函數(shù)f(x)取得最大值的x的集合;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

已知函數(shù)f(x)=
3
sinωxcosωx-cos2ωx
,其中ω為使f(x)能在x=
3
時(shí)取得最大值的最小正整數(shù).
(1)求ω的值;
(2)設(shè)△ABC的三邊長(zhǎng)a、b、c滿足b2=ac,且邊b所對(duì)的角θ的取值集合為A,當(dāng)x∈A時(shí),求f(x)的值域.

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

20080522

 

二、填空題:

13.13   14.   15.       16.②③

三、解答題:

 17.解:(1) f()=sin(2-)+1-cos2(-)

          = 2[sin2(-)- cos2(-)]+1

         =2sin[2(-)-]+1

         = 2sin(2x-) +1  …………………………………………5分

∴ T==π…………………………………………7分

  (2)當(dāng)f(x)取最大值時(shí), sin(2x-)=1,有  2x- =2kπ+ ……………10分

=kπ+    (kZ) …………………………………………11分

∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

 

18.解:(1) :當(dāng)時(shí),,…………………………………………1分

當(dāng)時(shí),.

……………………………………………………………………………………3分

是等差數(shù)列,

??????????…………………………………………5?分

 (2)解:, .…………………………………………7分

,, ……………………………………8分

??????????…………………………………………??9分

.

,,即是等比數(shù)列. ………………………11分

所以數(shù)列的前項(xiàng)和.………………………12分

19.解(1)∵函數(shù)的圖象的對(duì)稱軸為

要使在區(qū)間上為增函數(shù),

當(dāng)且僅當(dāng)>0且……………………2分

=1則=-1,

=2則=-1,1

=3則=-1,1,;………………4分

∴事件包含基本事件的個(gè)數(shù)是1+2+2=5

∴所求事件的概率為………………6分

(2)由(1)知當(dāng)且僅當(dāng)>0時(shí),

函數(shù)上為增函數(shù),

依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?sub>

構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠!?分

………………10分

∴所求事件的概率為………………12分

20解:(1):作,連

的中點(diǎn),連、,

則有……………………………4分

…………………………6分

(2)設(shè)為所求的點(diǎn),作,連.則………7分

就是與面所成的角,則.……8分

設(shè),易得

……………………………………10分

解得………11分

故線段上存在點(diǎn),且時(shí),與面角. …………12分

 

21.解(1)由

    

過(guò)點(diǎn)(2,)的直線方程為,即

   (2)由

在其定義域(0,+)上單調(diào)遞增。

只需恒成立

①由上恒成立

,∴,∴,∴…………………………10分

綜上k的取值范圍為………………12分

22.解:(1)由題意橢圓的離心率

∴橢圓方程為………………3分

又點(diǎn)(1,)在橢圓上,∴=1

∴橢圓的方程為………………6分

   (2)若直線斜率不存在,顯然不合題意;

則直線l的斜率存在!7分

設(shè)直線,直線l和橢交于,

依題意:………………………………9分

由韋達(dá)定理可知:………………10分

從而………………13分

求得符合

故所求直線MN的方程為:………………14分

 

 

 

 


同步練習(xí)冊(cè)答案
    • <tt id="9a4hz"></tt>